Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Immunol ; 15(3): 231-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24464131

RESUMO

Although interleukin 1 (IL-1) induces expression of the transcription factor IRF1 (interferon-regulatory factor 1), the roles of IRF1 in immune and inflammatory responses and mechanisms of its activation remain elusive. Here we found that IRF1 was essential for IL-1-induced expression of the chemokines CXCL10 and CCL5, which recruit mononuclear cells into sites of sterile inflammation. Newly synthesized IRF1 acquired Lys63 (K63)-linked polyubiquitination mediated by the apoptosis inhibitor cIAP2 that was enhanced by the bioactive lipid S1P. In response to IL-1, cIAP2 and the sphingosine kinase SphK1 (the enzyme that generates S1P) formed a complex with IRF1, which led to its activation. Thus, IL-1 triggered a hitherto unknown signaling cascade that controlled the induction of IRF1-dependent genes that encode molecules important for sterile inflammation.


Assuntos
Quimiocina CCL5/biossíntese , Quimiocina CXCL10/biossíntese , Fator Regulador 1 de Interferon/metabolismo , Interleucina-1/metabolismo , Transdução de Sinais/imunologia , Animais , Quimiocina CCL5/imunologia , Quimiocina CXCL10/imunologia , Quimiotaxia de Leucócito/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Imunoprecipitação , Inflamação/imunologia , Inflamação/metabolismo , Fator Regulador 1 de Interferon/imunologia , Interleucina-1/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lisina , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Ubiquitinação
2.
Arch Biochem Biophys ; 754: 109952, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38432565

RESUMO

Hedgehog (Hh) signaling plays a significant role in embryogenesis and several physiological processes, such as wound healing and organ homeostasis. In a pathological setting, it is associated with oncogenesis and is responsible for disease progression and poor clinical outcomes. Hedgehog signaling mediates downstream actions via Glioma Associated Oncogene Homolog (GLI) transcription factors. Inhibiting Hh signaling is an important oncological strategy in which inhibitors of the ligands SMO or GLI have been looked at. This review briefly narrates the Hh ligands, signal transduction, the target genes involved and comprehensively describes the numerous inhibitors that have been evaluated for use in various neoplastic settings.


Assuntos
Proteínas Hedgehog , Neoplasias , Humanos , Transdução de Sinais/genética , Alcaloides de Veratrum , Neoplasias/tratamento farmacológico
3.
FASEB J ; 35(3): e21415, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33566377

RESUMO

Acute liver failure (ALF) causes severe liver dysfunction that can lead to multi-organ failure and death. Previous studies suggest that sphingosine kinase 1 (SphK1) protects against hepatocyte injury, yet not much is still known about its involvement in ALF. This study examines the role of SphK1 in D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced ALF, which is a well-established experimental mouse model that mimics the fulminant hepatitis. Here we report that deletion of SphK1, but not SphK2, dramatically decreased GalN/LPS-induced liver damage, hepatic apoptosis, serum alanine aminotransferase levels, and mortality rate compared to wild-type mice. Whereas GalN/LPS treatment-induced hepatic activation of NF-κB and JNK in wild-type and SphK2-/- mice, these signaling pathways were reduced in SphK1-/- mice. Moreover, repression of ALF in SphK1-/- mice correlated with decreased expression of the pro-inflammatory cytokine TNFα. Adoptive transfer experiments indicated that SphK1 in bone marrow-derived infiltrating immune cells but not in host liver-resident cells, contribute to the development of ALF. Interestingly, LPS-induced TNFα production was drastically suppressed in SphK1-deleted macrophages, whereas IL-10 expression was markedly enhanced, suggesting a switch to the anti-inflammatory phenotype. Finally, treatment with a specific SphK1 inhibitor ameliorated inflammation and protected mice from ALF. Our findings suggest that SphK1 regulates TNFα secretion from macrophages and inhibition or deletion of SphK1 mitigated ALF. Thus, a potent inhibitor of SphK1 could potentially be a therapeutic agent for fulminant hepatitis.


Assuntos
Apoptose/genética , Inflamação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fator de Necrose Tumoral alfa/metabolismo , Alanina Transaminase/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Apoptose/fisiologia , Modelos Animais de Doenças , Galactosamina/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/metabolismo , Camundongos Knockout
4.
FASEB J ; 34(3): 4329-4347, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31971297

RESUMO

Plasmacytoid dendritic cells (pDCs) express Toll like receptors (TLRs) that modulate the immune response by production of type I interferons. Here, we report that sphingosine kinase 1 (SphK1) which produces the bioactive sphingolipid metabolite, sphingosine 1-phosphate (S1P), plays a critical role in the pDC functions and interferon production. Although dispensable for the pDC development, SphK1 is essential for the pDC activation and production of type I IFN and pro-inflammatory cytokines stimulated by TLR7/9 ligands. SphK1 interacts with TLRs and specific inhibition or deletion of SphK1 in pDCs mitigates uptake of CpG oligonucleotide ligands by TLR9 ligand. In the pristane-induced murine lupus model, pharmacological inhibition of SphK1 or its genetic deletion markedly decreased the IFN signature, pDC activation, and glomerulonephritis. Moreover, increases in the SphK1 expression and S1P levels were observed in human lupus patients. Taken together, our results indicate a pivotal regulatory role for the SphK1/S1P axis in maintaining the balance between immunosurveillance and immunopathology and suggest that specific SphK1 inhibitors might be a new therapeutic avenue for the treatment of type I IFN-linked autoimmune disorders.


Assuntos
Autoimunidade/fisiologia , Interferon Tipo I/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autoimunidade/genética , Western Blotting , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/genética
5.
FASEB J ; 33(6): 7061-7071, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840833

RESUMO

Systemic lupus erythematosus is an autoimmune disease characterized by overproduction of type 1 IFN that causes multiple organ dysfunctions. Plasmacytoid dendritic cells (pDCs) that secrete large amounts of IFN have recently been implicated in the initiation of the disease in preclinical mouse models. Sphingosine-1-phosphate, a bioactive sphingolipid metabolite, is produced by 2 highly conserved isoenzymes, sphingosine kinase (SphK) 1 and SphK2, and regulates diverse processes important for immune responses and autoimmunity. However, not much is known about the role of SphK2 in autoimmune disorders. In this work, we examined the role of SphK2 in pDC development and activation and in the pristane-induced lupus model in mice that mimics the hallmarks of the human disease. Increases in pDC-specific markers were observed in peripheral blood of SphK2 knockout mice. In agreement, the absence of SphK2 increased the differentiation of FMS-like tyrosine kinase 3 ligand dendritic cells as well as expression of endosomal TLRs, TLR7 and TLR9, that modulate production of IFN. Surprisingly, however, SphK2 deficiency did not affect the initiation or progression of pristane-induced lupus. Moreover, although absence of SphK2 increased pDC frequency in pristane-induced lupus, there were no major changes in their activation status. Additionally, SphK2 expression was unaltered in lupus patients. Taken together, our results suggest that SphK2 may play a role in dendritic cell development. Yet, because its deletion had no effect on the clinical lupus parameters in this preclinical model, inhibitors of SphK2 might not be useful for treatment of this devastating disease.-Mohammed, S., Vineetha, N. S., James, S., Aparna, J. S., Lankadasari, M. B., Allegood, J. C., Li, Q.-Z., Spiegel, S., Harikumar, K. B. Examination of the role of sphingosine kinase 2 in a murine model of systemic lupus erythematosus.


Assuntos
Lúpus Eritematoso Sistêmico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Terpenos/farmacologia , Adolescente , Adulto , Animais , Apoptose/efeitos dos fármacos , Líquido Ascítico/citologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Pessoa de Meia-Idade , Lavagem Peritoneal , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Adulto Jovem
6.
Mol Cancer ; 18(1): 48, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30925924

RESUMO

Among all the deadly cancers, pancreatic cancer ranks seventh in mortality. The absence of any grave symptoms coupled with the unavailability of early prognostic and diagnostic markers make the disease incurable in most of the cases. This leads to a late diagnosis, where the disease would have aggravated and thus, incurable. Only around 20% of the cases present the early disease diagnosis. Surgical resection is the prime option available for curative local disease but in the case of advanced cancer, chemotherapy is the standard treatment modality although the patients end up with drug resistance and severe side effects. Desmoplasia plays a very important role in chemoresistance associated with pancreatic cancer and consists of a thick scar tissue around the tumor comprised of different cell populations. The interplay between this heterogenous population in the tumor microenvironment results in sustained tumor growth and metastasis. Accumulating evidences expose the crucial role played by the tumor-associated macrophages in pancreatic cancer and this review briefly presents the origin from their parent lineage and the importance in maintaining tumor hallmarks. Finally we have tried to address their role in imparting chemoresistance and the therapeutic interventions leading to reduced tumor burden.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral , Animais , Humanos , Prognóstico
7.
Mol Cancer ; 17(1): 76, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29580241

RESUMO

DNA damage-specific histone chaperone Aprataxin PNK-like factor (APLF) regulates mesenchymal-to-epithelial transition (MET) during cellular reprogramming. We investigated the role of APLF in epithelial-to-mesenchymal transition (EMT) linked to breast cancer invasiveness and metastasis. Here, we show that a significant manifestation of APLF is present in tumor sections of patients with invasive ductal carcinoma when compared to their normal adjacent tissues. APLF was significantly induced in triple negative breast cancer (TNBC) cells, MDAMB-231, in comparison to invasive MCF7 or normal MCF10A breast cells and supported by studies on invasive breast carcinoma in The Cancer Genome Atlas (TCGA). Functionally, APLF downregulation inhibited proliferative capacity, altered cell cycle behavior, induced apoptosis and impaired DNA repair ability of MDAMB-231 cells. Reduction in APLF level impeded invasive, migratory, tumorigenic and metastatic potential of TNBC cells with loss in expression of genes associated with EMT while upregulation of MET-specific gene E-cadherin (CDH1). So, here we provided novel evidence for enrichment of APLF in breast tumors, which could regulate metastasis-associated EMT in invasive breast cancer. We anticipate that APLF could be exploited as a biomarker for breast tumors and additionally could be targeted in sensitizing cancer cells towards DNA damaging agents.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Regulação para Cima , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transplante de Neoplasias , Análise Serial de Tecidos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
8.
Nature ; 465(7301): 1084-8, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20577214

RESUMO

Tumour-necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is a key component in NF-kappaB signalling triggered by TNF-alpha. Genetic evidence indicates that TRAF2 is necessary for the polyubiquitination of receptor interacting protein 1 (RIP1) that then serves as a platform for recruitment and stimulation of IkappaB kinase, leading to activation of the transcription factor NF-kappaB. Although TRAF2 is a RING domain ubiquitin ligase, direct evidence that TRAF2 catalyses the ubiquitination of RIP1 is lacking. TRAF2 binds to sphingosine kinase 1 (SphK1), one of the isoenzymes that generates the pro-survival lipid mediator sphingosine-1-phosphate (S1P) inside cells. Here we show that SphK1 and the production of S1P is necessary for lysine-63-linked polyubiquitination of RIP1, phosphorylation of IkappaB kinase and IkappaBalpha, and IkappaBalpha degradation, leading to NF-kappaB activation. These responses were mediated by intracellular S1P independently of its cell surface G-protein-coupled receptors. S1P specifically binds to TRAF2 at the amino-terminal RING domain and stimulates its E3 ligase activity. S1P, but not dihydro-S1P, markedly increased recombinant TRAF2-catalysed lysine-63-linked, but not lysine-48-linked, polyubiquitination of RIP1 in vitro in the presence of the ubiquitin conjugating enzymes (E2) UbcH13 or UbcH5a. Our data show that TRAF2 is a novel intracellular target of S1P, and that S1P is the missing cofactor for TRAF2 E3 ubiquitin ligase activity, indicating a new paradigm for the regulation of lysine-63-linked polyubiquitination. These results also highlight the key role of SphK1 and its product S1P in TNF-alpha signalling and the canonical NF-kappaB activation pathway important in inflammatory, antiapoptotic and immune processes.


Assuntos
Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Biocatálise , Linhagem Celular , Ativação Enzimática , Humanos , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Lisina/metabolismo , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/química , Camundongos , Modelos Moleculares , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Esfingosina/biossíntese , Esfingosina/química , Esfingosina/metabolismo , Especificidade por Substrato , Fator 2 Associado a Receptor de TNF/química , Fator de Necrose Tumoral alfa/farmacologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
9.
J Allergy Clin Immunol ; 135(4): 1008-1018.e1, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25512083

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced by mast cells (MCs) on cross-linking of their high-affinity receptors for IgE by antigen that can amplify MC responses by binding to its S1P receptors. An acute MC-dependent allergic reaction can lead to systemic shock, but the early events of its development in lung tissues have not been investigated, and S1P functions in the onset of allergic processes remain to be examined. OBJECTIVE: We used a highly specific neutralizing anti-S1P antibody (mAb) and the sphingosine-1-phosphate receptor 2 (S1PR2) antagonist JTE-013 to study the signaling contributions of S1P and S1PR2 to MC- and IgE-dependent airway allergic responses in mice within minutes after antigen challenge. METHODS: Allergic reaction was triggered by a single intraperitoneal dose of antigen in sensitized mice pretreated intraperitoneally with anti-S1P, isotype control mAb, JTE-013, or vehicle before antigen challenge. RESULTS: Kinetics experiments revealed early pulmonary infiltration of mostly T cells around blood vessels of sensitized mice 20 minutes after antigen exposure. Pretreatment with anti-S1P mAb inhibited in vitro MC activation, as well as in vivo development of airway infiltration and MC activation, reducing serum levels of histamine, cytokines, and the chemokines monocyte chemoattractant protein 1/CCL2, macrophage inflammatory protein 1α/CCL3, and RANTES/CCL5. S1PR2 antagonism or deficiency or MC deficiency recapitulated these results. Both in vitro and in vivo experiments demonstrated MC S1PR2 dependency for chemokine release and the necessity for signal transducer and activator of transcription 3 activation. CONCLUSION: Activation of S1PR2 by S1P and downstream signal transducer and activator of transcription 3 signaling in MCs regulate early T-cell recruitment to antigen-challenged lungs through chemokine production.


Assuntos
Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Lisofosfolipídeos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transferência Adotiva , Animais , Antígenos/imunologia , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Lisofosfolipídeos/antagonistas & inibidores , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
10.
J Allergy Clin Immunol ; 131(2): 501-11.e1, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22939756

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P), which is produced by 2 sphingosine kinase (SphK) isoenzymes, SphK1 and SphK2, has been implicated in IgE-mediated mast cell responses. However, studies of allergic inflammation in isotype-specific SphK knockout mice have not clarified their contribution, and the role that S1P plays in vivo in a mast cell- and IgE-dependent murine model of allergic asthma has not yet been examined. OBJECTIVE: We used an isoenzyme-specific SphK1 inhibitor, SK1-I, to investigate the contributions of S1P and SphK1 to mast cell-dependent airway hyperresponsiveness (AHR) and airway inflammation in mice. METHODS: Allergic airway inflammation and AHR were examined in a mast cell-dependent murine model of ovalbumin (OVA)-induced asthma. C57BL/6 mice received intranasal delivery of SK1-I before sensitization and challenge with OVA or only before challenge. RESULTS: SK1-I inhibited antigen-dependent activation of human and murine mast cells and suppressed activation of nuclear factor κB (NF-κB), a master transcription factor that regulates the expression of proinflammatory cytokines. SK1-I treatment of mice sensitized to OVA in the absence of adjuvant, in which mast cell-dependent allergic inflammation develops, significantly reduced OVA-induced AHR to methacholine; decreased numbers of eosinophils and levels of the cytokines IL-4, IL-5, IL-6, IL-13, IFN-γ, and TNF-α and the chemokines eotaxin and CCL2 in bronchoalveolar lavage fluid; and decreased pulmonary inflammation, as well as activation of NF-κB in the lungs. CONCLUSION: S1P and SphK1 play important roles in mast cell-dependent, OVA-induced allergic inflammation and AHR, in part by regulating the NF-κB pathway.


Assuntos
Amino Álcoois/farmacologia , Asma/tratamento farmacológico , Hiper-Reatividade Brônquica/tratamento farmacológico , Inflamação/tratamento farmacológico , Mastócitos/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Asma/induzido quimicamente , Asma/enzimologia , Asma/metabolismo , Hiper-Reatividade Brônquica/enzimologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/patologia , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Quimiocina CCL2/metabolismo , Feminino , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Humanos , Hiperplasia/tratamento farmacológico , Hiperplasia/metabolismo , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lisofosfolipídeos/metabolismo , Mastócitos/metabolismo , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Ovalbumina/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Curr Med Chem ; 31(32): 5165-5177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549529

RESUMO

Immunotherapy is a newly emerging and effective approach to treating cancer. However, there are many challenges associated with using checkpoint inhibitors in this treatment strategy. The component of the tumor microenvironment plays a crucial role in antitumor immune response, regulating tumor immune surveillance and immunological evasion. Natural products/phytochemicals can modulate the tumor microenvironment and function as immunomodulatory agents. In clinical settings, there is a strong need to develop synergistic combination regimens using natural products that can effectively enhance the therapeutic benefits of immune checkpoint inhibitors relative to their effectiveness as single therapies. The review discusses immunotherapy, its side effects, and a summary of evidence suggesting the use of natural products to modulate immune checkpoint pathways.


Assuntos
Produtos Biológicos , Imunoterapia , Neoplasias , Compostos Fitoquímicos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais
12.
Artigo em Inglês | MEDLINE | ID: mdl-39129290

RESUMO

INTRODUCTION: Sorafenib (Sor) is the first-line treatment option in clinics for treating advanced unresectable hepatocellular carcinoma (HCC). However, acquired chemoresistance and adverse side effects associated with Sor monotherapy limit its clinical benefits. We have previously reported the exceptional anti-HCC potential of uttroside B (Utt-B), a furostanol saponin isolated in our lab from Solanum nigrum Linn. leaves. The current study has evaluated the supremacy of a combinatorial regimen of Sor and Utt-B over Sor monotherapy. METHODS: MTT assay was used for In vitro cytotoxicity studies. A clonogenic assay was conducted to assess the anti-proliferative effect of the combination. Annexin V/PI staining, confocal microscopy, FACS cell cycle analysis, and Western blotting experiments were performed to validate the pro-apoptotic potential of the combination in HepG2 and Huh7 cell lines. Pharmacological safety evaluation was performed in Swiss albino mice. RESULTS: Our results indicate that Utt-B augments Sor-induced cytotoxicity in HepG2 and Huh7 cells. The combination inhibits the proliferation of liver cancer cells by inducing apoptosis through activation of the caspases 7 and 3, leading to PARP cleavage. Furthermore, the combination does not induce any acute toxicity in vivo, even at a dose five times that of the effective therapeutic dose. CONCLUSION: Our results highlight the potential of Utt-B as an effective chemosensitizer, which can augment the efficacy of Sor against HCC and circumvent Sor-induced toxic side effects. Moreover, this is the first and only report to date on the chemosensitizing potential of Utt-B and the only report that demonstrates the therapeutic efficacy and pharmacological safety of a novel combinatorial regimen involving Utt-B and Sor for combating HCC.

13.
FASEB J ; 26(8): 3188-98, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22532440

RESUMO

Ovarian cancer is the most lethal gynecological cancer. Here we show that innate immune agonist, dsRNA, directly induces ovarian cancer cell death and identify biomarkers associated with responsiveness to this targeted treatment. Nuclear staining and MTT assays following dsRNA stimulation revealed two subpopulations, sensitive (OVCAR-3, CAOV-3; patient samples malignant 1 and 2) and resistant (DOV-13, SKOV-3). Microarray analysis identified 75 genes with differential expression that further delineated these two subpopulations. qPCR and immunoblot analyses showed increased dsRNA receptor expression after stimulation as compared to resistant and immortalized ovarian surface epithelial cells (e.g., 70-fold with malignant 2, 43-fold with OVCAR-3). Using agonists, antagonists, and shRNA-mediated knockdown of dsRNA receptors, we show that TLR3, RIG-I, and mda5 coordinated a caspase 8/9- and interferon-dependent cell death. In resistant cells, dsRNA receptor overexpression restored dsRNA sensitivity. When dsRNA was combined with carboplatin or paclitaxel, cell viability significantly decreased over individual treatments (1.5- to 7.5-fold). Isobologram analyses showed synergism in dsRNA combinations (CI=0.4-0.82) vs. an additive effect in carboplatin/paclitaxel treatment (CI=1.5-2). Our data identify a predictive marker, dsRNA receptor expression, to target dsRNA responsive populations and show that, in dsRNA-sensitive cells, dsRNA induces apoptosis and enhances the potency of cytotoxic chemotherapeutics.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , RNA de Cadeia Dupla/uso terapêutico , Biomarcadores Tumorais/análise , Caspases/metabolismo , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Ativação Enzimática , Feminino , Humanos , Interferon beta/metabolismo , NF-kappa B/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , RNA de Cadeia Dupla/efeitos dos fármacos , RNA Mensageiro/metabolismo
14.
Prog Lipid Res ; 92: 101251, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633365

RESUMO

Sphingolipids are essential components of all eukaryotic membranes. The bioactive sphingolipid molecule, Sphingosine 1-Phosphate (S1P), regulates various important biological functions. This review aims to provide a comprehensive overview of the role of S1P signaling pathway in various immune cell functions under different pathophysiological conditions including bacterial and viral infections, autoimmune disorders, inflammation, and cancer. We covered the aspects of S1P pathways in NOD/TLR pathways, bacterial and viral infections, autoimmune disorders, and tumor immunology. This implies that targeting S1P signaling can be used as a strategy to block these pathologies. Our current understanding of targeting various components of S1P signaling for therapeutic purposes and the present status of S1P pathway inhibitors or modulators in disease conditions where the host immune system plays a pivotal role is the primary focus of this review.


Assuntos
Doenças Autoimunes , Viroses , Humanos , Esfingosina/metabolismo , Esfingolipídeos/metabolismo , Transdução de Sinais
15.
Clin Exp Med ; 23(6): 1901-1916, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36780119

RESUMO

Hepatocellular carcinoma (HCC) is a chronic liver disease that is highly fatal if not detected and treated early. The incidence and death rate of HCC have been increasing in recent decades despite the measures taken for preventive screening and effective diagnostic and treatment strategies. The pathophysiology of HCC is multifactorial and highly complex owing to its molecular and immune heterogeneity, and thus the gap in knowledge still precludes making choices between viable therapeutic options and also the development of effective regimens. The treatment of HCC demands multidisciplinary approaches and primarily depends on tumor stage, hepatic functional reserve, and response to treatment by patients. Although curative treatments are limited but critical in the early stages of cancer, there are numerous palliative treatments available for patients with intermediate and advanced-stage HCC. In recent times, the use of combination therapy has succeeded over the use of monotherapy in the treatment of HCC by achieving effective tumor suppression, increasing survival rate, decreasing toxicity, and also aiding in overcoming drug resistance. This work focuses on reviewing the current and emerging treatment strategies for HCC.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/patologia , Terapia Combinada
16.
Sci Rep ; 13(1): 7947, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193898

RESUMO

Non-small cell lung carcinomas (NSCLC) are the predominant form of lung malignancy and the reason for the highest number of cancer-related deaths. Widespread deregulation of Akt, a serine/threonine kinase, has been reported in NSCLC. Allosteric Akt inhibitors bind in the space separating the Pleckstrin homology (PH) and catalytic domains, typically with tryptophan residue (Trp-80). This could decrease the regulatory site phosphorylation by stabilizing the PH-in conformation. Hence, in this study, a computational investigation was undertaken to identify allosteric Akt-1 inhibitors from FDA-approved drugs. The molecules were docked at standard precision (SP) and extra-precision (XP), followed by Prime molecular mechanics-generalized Born surface area (MM-GBSA), and molecular dynamics (MD) simulations on selected hits. Post XP-docking, fourteen best hits were identified from a library of 2115 optimized FDA-approved compounds, demonstrating several beneficial interactions such as pi-pi stacking, pi-cation, direct, and water-bridged hydrogen bonds with the crucial residues (Trp-80 and Tyr-272) and several amino acid residues in the allosteric ligand-binding pocket of Akt-1. Subsequent MD simulations to verify the stability of chosen drugs to the Akt-1 allosteric site showed valganciclovir, dasatinib, indacaterol, and novobiocin to have high stability. Further, predictions for possible biological interactions were performed using computational tools such as ProTox-II, CLC-Pred, and PASSOnline. The shortlisted drugs open a new class of allosteric Akt-1 inhibitors for the therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Simulação de Dinâmica Molecular
17.
J Adv Res ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38142035

RESUMO

INTRODUCTION: Acid ceramidase (hereafter referred as ASAH1) is an enzyme in sphingolipid metabolism that converts pro-survival ceramide into sphingosine. ASAH1 has been shown to be overexpressed in certain cancers. However, the role of ASAH1 in colorectal cancer still remain elusive. OBJECTIVE: The present study is aimed to understand how ASAH1 regulates colorectal cancer (CRC) progression and resistance to checkpoint inhibitor therapy. METHODS: Both pharmacological and genetic silencing of ASAH1 was used in the study. In vitro experiments were done on human and mouse CRC cell lines. The in vivo studies were conducted in NOD-SCID and BALB/c mice models. The combination of ASAH1 inhibitor and checkpoint inhibitor was tested using a syngeneic tumor model of CRC. Transcriptomic and metabolomic analyses were done to understand the effect of ASAH1 silencing. RESULTS: ASAH1 is overexpressed in human CRC cases, and silencing the expression resulted in the induction of immunological cell death (ICD) and mitochondrial stress. The ASAH1 inhibitor (LCL-521), either as monotherapy or in combination with an anti-PD-1 antibody, resulted in reduction of tumors and, through induction of type I and II interferon response, activation of M1 macrophages and T cells, leading to enhanced infiltration of cytotoxic T cells. Our findings supported that the combination of LCL-521 and ICIs, which enhances the antitumor responses, and ASAH1 can be a druggable target in CRC.

18.
Cancer Metastasis Rev ; 30(3-4): 577-97, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22002715

RESUMO

Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.


Assuntos
Lisofosfolipídeos/metabolismo , Neoplasias/enzimologia , Neoplasias/metabolismo , Esfingosina/análogos & derivados , Aldeído Liases/metabolismo , Animais , Transporte Biológico , Líquido Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
Clin Cancer Res ; 28(9): 1948-1965, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35135840

RESUMO

PURPOSE: Although chemotherapies kill most cancer cells, stem cell-enriched survivors seed metastasis, particularly in triple-negative breast cancers (TNBC). TNBCs arise from and are enriched for tumor stem cells. Here, we tested if inhibition of DOT1L, an epigenetic regulator of normal tissue stem/progenitor populations, would target TNBC stem cells. EXPERIMENTAL DESIGN: Effects of DOT1L inhibition by EPZ-5676 on stem cell properties were tested in three TNBC lines and four patient-derived xenograft (PDX) models and in isolated cancer stem cell (CSC)-enriched ALDH1+ and ALDH1- populations. RNA sequencing compared DOT1L regulated pathways in ALDH1+ and ALDH1- cells. To test if EPZ-5676 decreases CSC in vivo, limiting dilution assays of EPZ-5676/vehicle pretreated ALDH1+ and ALDH1- cells were performed. Tumor latency, growth, and metastasis were evaluated. Antitumor activity was also tested in TNBC PDX and PDX-derived organoids. RESULTS: ALDH1+ TNBC cells exhibit higher DOT1L and H3K79me2 than ALDH1-. DOT1L maintains MYC expression and self-renewal in ALDH1+ cells. Global profiling revealed that DOT1L governs oxidative phosphorylation, cMyc targets, DNA damage response, and WNT activation in ALDH1+ but not in ALDH1- cells. EPZ-5676 reduced tumorspheres and ALDH1+ cells in vitro and decreased tumor-initiating stem cells and metastasis in xenografts generated from ALDH1+ but not ALDH1- populations in vivo. EPZ-5676 significantly reduced growth in vivo of one of two TNBC PDX tested and decreased clonogenic 3D growth of two other PDX-derived organoid cultures. CONCLUSIONS: DOT1L emerges as a key CSC regulator in TNBC. Present data support further clinical investigation of DOT1L inhibitors to target stem cell-enriched TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Família Aldeído Desidrogenase 1 , Linhagem Celular Tumoral , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454902

RESUMO

Due to its overexpression on the surface of prostate cancer (PCa) cells, the prostate stem cell antigen (PSCA) is a potential target for PCa diagnosis and therapy. Here we describe the development and functional characterization of a novel IgG4-based anti-PSCA antibody (Ab) derivative (anti-PSCA IgG4-TM) that is conjugated with the chelator DOTAGA. The anti-PSCA IgG4-TM represents a multimodal immunotheranostic compound that can be used (i) as a target module (TM) for UniCAR T cell-based immunotherapy, (ii) for diagnostic positron emission tomography (PET) imaging, and (iii) targeted alpha therapy. Cross-linkage of UniCAR T cells and PSCA-positive tumor cells via the anti-PSCA IgG4-TM results in efficient tumor cell lysis both in vitro and in vivo. After radiolabeling with 64Cu2+, the anti-PSCA IgG4-TM was successfully applied for high contrast PET imaging. In a PCa mouse model, it showed specific accumulation in PSCA-expressing tumors, while no uptake in other organs was observed. Additionally, the DOTAGA-conjugated anti-PSCA IgG4-TM was radiolabeled with 225Ac3+ and applied for targeted alpha therapy. A single injection of the 225Ac-labeled anti-PSCA IgG4-TM was able to significantly control tumor growth in experimental mice. Overall, the novel anti-PSCA IgG4-TM represents an attractive first member of a novel group of radio-/immunotheranostics that allows diagnostic imaging, endoradiotherapy, and CAR T cell immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA