Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Membr Biol ; 256(3): 199-222, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752839

RESUMO

Lymphatic drug targeting is an effective approach for targeting immunomodulators, and chemotherapeutic drugs at a specific organ or cellular location. The cellular, paracellular, and dendritic cell trafficking machinery are involved in the lymphatic transport of therapeutic agents. The engineering of triggered and hybrid lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and microbial pandemics. Hybrid lymphatic drug delivery systems can be tailored and developed by grafting the conventional LDDS with biological agents. Thus, hybrid LDDS could collect the benefits of conventional and biological delivery systems. Moreover, the fabrication of triggered LDDS increases drug accumulation in the lymphatic system in the response to an internal stimulus such as pH, and redox status or external such as magnetic field, temperature, and light. Stimuli-responsive LDD systems prevent premature release of payload and mediate selective drug biodistribution. This improves therapeutic impact and reduces the systemic side effect of anticancer, immunomodulatory, and antimicrobial therapeutics. This review highlights the challenges and future horizons of nanoscaled-triggered LDDS and their influence on the lymphatic trafficking of therapeutic molecules.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Distribuição Tecidual , Temperatura , Nanopartículas/química
2.
J Biochem Mol Toxicol ; 37(12): e23496, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555509

RESUMO

Compared to the general population, patients with arthritis have a higher risk of fertility abnormalities, which have deleterious effects on both reproductive function and pregnancy outcomes, especially in patients wishing to conceive. These may be due to the disease itself or those of drug therapies. Despite the increasing use of rituximab in arthritis, limited data are available on its potential to induce aneuploidy in germ cells. Therefore, the aim of the current investigation was to determine if repeated treatment with rituximab affects the incidence of aneuploidy and redox imbalance in arthritic mouse sperm. Mice were treated with 250 mg/kg rituximab once weakly for 3 weeks, and then sperm were sampled 22 days after the last dose of rituximab. Fluorescence in situ hybridization assay with chromosome-specific DNA probes was used to evaluate the disomic/diploid sperm. Our results showed that rituximab had no aneuploidogenic effect on the meiotic stage of spermatogenesis. Conversely, arthritis induced a significantly high frequency of disomy, and treatment of arthritic mice with rituximab reduced the increased levels of disomic sperm. The occurrence of total diploidy was not significantly different in all groups. Reduced glutathione and8-hydroxydeoxyguanosine, markers of oxidative stress were significantly altered in arthritic animals, while rituximab treatment restored these changes. Additionally, arthritis severity was reduced after rituximab treatment. We conclude that rituximab may efficiently alleviate the arthritis-induced effects on male meiosis and avert the higher risk of abnormal reproductive outcomes. Therefore, treating arthritic patients with rituximab may efficiently inhibit the transmission of genetic anomalies induced by arthritis to future generations.


Assuntos
Artrite Reumatoide , Sêmen , Humanos , Masculino , Camundongos , Animais , Rituximab/farmacologia , Rituximab/uso terapêutico , Hibridização in Situ Fluorescente/métodos , Camundongos Endogâmicos DBA , Espermatozoides , Aneuploidia , Artrite Reumatoide/tratamento farmacológico
3.
Drug Dev Res ; 84(7): 1453-1467, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37519092

RESUMO

Breast cancer represents a life-threatening problem globally. The major challenge in the clinical setting is the management of cancer resistance and metastasis. Hybrid therapy can affect several cellular targets involved in carcinogenesis with a lessening of adverse effects. Therefore, the current study aims to assemble, and optimize a hybrid of gefitinib (GFT) and simvastatin (SIM)-loaded nanostructured lipid carrier (GFT/SIM-NLC) to combat metastatic and drug-resistant breast cancer. GFT/SIM-NLC cargos were prepared using design of experiments to investigate the impact of poloxamer-188 and fatty acids concentrations on the physicochemical and pharmaceutical behavior properties of NLC. Additionally, the biosafety of the prepared GFT/SIM-NLC was studied using a fresh blood sample. Afterward, the optimized formulation was subjected to an MTT assay to study the cytotoxic activity of GFT/SIM-NLC compared to free GFT/SIM using an MCF-7 cell line as a surrogate model for breast cancer. The present results revealed that the particle size of the prepared NLC ranged from (209 to 410 nm) with a negative zeta potential value ranging from (-17.2 to -23.9 mV). Moreover, the optimized GFT/SIM-NLC formulation showed favorable physicochemical properties and promising lymphatic delivery cargos. A biosafety study indicates that the prepared NLC has a gentle effect on erythrocyte hemolysis. Cytotoxicity studies revealed that GFT/SIM-NLC enhanced the killing of the MCF-7 cell line compared to free GFT/SIM. This study concluded that the hybrid therapy of GFT/SIM-NLC is a potential approach to combat metastatic and drug-resistant breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Portadores de Fármacos/química , Gefitinibe , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Reposicionamento de Medicamentos , Lipídeos , Tamanho da Partícula
4.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615641

RESUMO

Gefitinib (GEF) is utilized in clinical settings for the treatment of metastatic lung cancer. However, premature drug release from nanoparticles in vivo increases the exposure of systemic organs to GEF. Herein, nanostructured lipid carriers (NLC) were utilized not only to avoid premature drug release but also due to their inherent lymphatic tropism. Therefore, the present study aimed to develop a GEF-NLC as a lymphatic drug delivery system with low drug release. Design of experiments was utilized to develop a stable GEF-NLC as a lymphatic drug delivery system for the treatment of metastatic lung cancer. The in vitro drug release of GEF from the prepared GEF-NLC formulations was studied to select the optimum formulation. MTT assay was utilized to study the cytotoxic activity of GEF-NLC compared to free GEF. The optimized GEF-NLC formulation showed favorable physicochemical properties: <300 nm PS, <0.2 PDI, <−20 ZP values with >90% entrapment efficiency. Interestingly, the prepared formulation was able to retain GEF with only ≈57% drug release within 24 h. Furthermore, GEF-NLC reduced the sudden exposure of cultured cells to GEF and produced the required cytotoxic effect after 48 and 72 h incubation time. Consequently, optimized formulation offers a promising approach to improve GEF's therapeutic outcomes with reduced systemic toxicity in treating metastatic lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Nanoestruturas , Humanos , Portadores de Fármacos , Gefitinibe , Lipídeos , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula
5.
Saudi Pharm J ; 31(3): 370-381, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37026046

RESUMO

Purpose: The clinical study of fulminant hepatic failure is challenging due to its high mortality and relative rarity, necessitating reliance on pre-clinical models to gain insight into its pathophysiology and develop potential therapies. Methods and Results: In our study, the combination of the commonly used solvent dimethyl sulfoxide to the current-day model of lipopolysaccharide/d-galactosamine-caused fulminant hepatic failure was found to cause significantly greater hepatic damage, as indicated by alanine aminotransferase level. The effect was dose-dependent, with the maximum increase in alanine aminotransferase observed following 200 µl/kg dimethyl sulfoxide co-administration. Co-administration of 200 µl/kg dimethyl sulfoxide also remarkably increased histopathological changes induced by lipopolysaccharide/d-galactosamine. Importantly, alanine aminotransferase levels and survival rate in the 200 µl/kg dimethyl sulfoxide co-administration groups were both greater than those in the classical lipopolysaccharide/d-galactosamine model. We found that dimethyl sulfoxide co-administration aggravated lipopolysaccharide/d-galactosamine-caused liver damage by stimulating inflammatory signaling, as indicated by tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) levels. Further, nuclear factor kappa B (NF-kB) and transcription factor activator 1 (STAT1) were upregulated, as was neutrophil recruitment, indicated by myeloperoxidase activity. Hepatocyte apoptosis was also increased, and greater nitro-oxidative stress was noted, as determined based on nitric oxide, malondialdehyde, and glutathione levels. Conclusion: Co-treatment with low doses of dimethyl sulfoxide enhanced the lipopolysaccharide/d-galactosamine-caused hepatic failure in animals, with higher toxicity and greater survival rates. The current findings also highlight the potential danger of using dimethyl sulfoxide as a solvent in experiments involving the hepatic immune system, suggesting that the new lipopolysaccharide/d-galactosamine/dimethyl sulfoxide model described herein could be used for pharmacological screening with the goal to better understand hepatic failure and evaluate treatment approaches.

6.
AAPS PharmSciTech ; 23(6): 183, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773422

RESUMO

The present study aimed to engineer a nanoscale lipid-based lymphatic drug delivery system with D-α-Tocopherol polyethylene glycol 1000 succinate to combat the lymphatic metastasis of lung cancer. The nanoscale lipid-based systems including GEF-SLN, GEF-NLC, and GEF-LE were prepared and pharmaceutically characterized. In addition, the most stable formulation (GEF-NLC) was subjected to an in vitro release study. Afterward, the optimized GEF-NLC was engineered with TPGS (GEF-TPGS-NLC) and subjected to in vitro cytotoxicity, and apoptotic studies using the A549 cells line as a surrogate model for lung cancer. The present results revealed that particle size and polydispersity index of freshly prepared formulations were ranging from 198 to 280 nm and 0.106 to 0.240, respectively, with negative zeta potential ranging from - 14 to - 27.6.mV. An in vitro release study showed that sustained drug release was attained from GEF-NLC containing a high concentration of lipid. In addition, GEF-NLC and GEF-TPGS-NLC showed remarkable entrapment efficiency above 89% and exhibited sustained release profiles. Cytotoxicity showed that IC50 of pure GEF was 11.15 µg/ml which decreased to 7.05 µg/ml for GEF-TPGS-NLC. The apoptotic study revealed that GEF-TPGS-NLC significantly decreased the number of living cells from 67 to 58% when compared with pure GEF. The present results revealed that the nanoscale and lipid composition of the fabricated SLN, NLC, and LE could mediate the lymphatic uptake of GEF to combat the lymphatic tumor metastasis. Particularly, GEF-TPGS-NLC is a promising LDDS to increase the therapeutic outcomes of GEF during the treatment of metastatic lung cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Células A549 , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Gefitinibe , Humanos , Lipídeos , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula , Vitamina E
7.
AAPS PharmSciTech ; 21(5): 168, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514657

RESUMO

Bacteriosomes are a member of cell-derived vesicles that are proposed as promising tools in diagnosis, therapy, and drug delivery. These vesicles could be derived from a virus, bacterial cells, and animal cells. Biotechnology techniques were used in bioengineering of cell-derived vesicles in vitro, and in vivo. Bacterial vesicles such as bacterial cells, bacterial ghost, or bacteriosomes are vesicular structures derived from bacteria produced by manipulation of bacterial cells by chemical agents or gene-mediated lysis. Subsequently, bacterial vesicles (bacteriosomes) are non-living, non-denatured bacterial cell envelopes free of the cytoplasm and genetic materials. Gram-negative and Gram-positive bacteria are exploited in the production of bacteriosomes. Bacteriosomes have instinct organs, tissues, cells, as well as subcellular tropism. Moreover, bacteriosomes might be used as immunotherapy and/or drug delivery shuttles. They could act as cargoes for the delivery of small drugs, large therapeutics, and nanoparticles to the specific location. Furthermore, bacteriosomes have nature endosomal escaping ability, hence they could traffic different bio-membranes by endocytosis mechanisms. Therefore, bacterial-derived vesicles could be used in therapy and development of an innovative drug delivery systems. Consequently, utilizing bacteriosomes as drug cargoes enhances the delivery and efficacy of administered therapeutic agents. This review highlighted bacteriosomes in terms of source, engineering, characterization, applications, and limitations.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Imunoterapia/métodos , Animais , Bactérias , Micropartículas Derivadas de Células , Humanos
8.
Saudi Pharm J ; 28(4): 387-396, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273796

RESUMO

Tumor cells overexpress low-density lipoprotein (LDL) receptors (LDL-r). Hence, LDL is proposed as a targeting shuttle of anticancer drugs. Therefore, the objective of this study was to synthesize a dual inhibitor of heat shock protein 27 (HSP27) and human epidermal growth factor receptor 2 (HER2) conjugated with cholesterol and encapsulated into LDL for selective targeting of ovarian cancer cells. In the present study, the anticancer agent and its cholesterol conjugate were successfully prepared and characterized physically for color, shape, and melting point. Moreover, the compounds were chemically characterized for 1H NMR and 13C NMR spectra using FTIR and LCMS/MS. Our results revealed that the prepared anticancer agent and its cholesterol conjugate elicited dual HSP27 and HER2 inhibition, as confirmed using western blotting. The anticancer agent (compound D) entered cells and targeted the HSP27 function, thereby reducing HER2 expression. However, a cholesterol-conjugated anticancer agent (compound F) had high cellular uptake and inhibited the growth of SKOV3 cells after encapsulation into LDL. The obtained results concluded that the design of an LDL-encapsulated cholesterol-conjugated HSP27-HER2 dual inhibitor may be a promising approach to realize specific targeted achieve killing of ovarian cancer.

9.
Saudi Pharm J ; 28(12): 1851-1867, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424274

RESUMO

Simvastatin (SV) repurposing has emerged as an alternative approach for the treatment of cancer. In this study, SV chitosan nanoparticles co-crosslinked with tripolyphosphate and chondroitin sulfate (SVCSChSNPs) were developed in order to maximize SV therapeutic efficiency. The hepatic targeting was realized using N-acetylgalactosamine (GalNAc) residues of ChS, which can be identified by the ASGPR receptors specifically expressed in hepatocytes. SV was repurposed as an anticancer agent against hepatocellular carcinoma (HCC). NPs were fabricated by the ionic gelation method, and the formulation variables (CS concentration, CS:ChS ratio, and CS solution pH) were optimized using a three-factor, three-level Box-Behnken design. The optimized NPs were investigated for particle size, size distribution, zeta potential, morphology, in vitro cytotoxicity, apoptotic effects against human hepatocellular carcinoma HepG2 cells, and detection of intracellular localization. The NPs were further evaluated for in vitro release behavior of SV and pharmacokinetics using Wister albino rats. Transmission electron microscopy (TEM) imaging showed a spherical shape with regular surface NPs of < 100 nm diameter. In vitro cytotoxicity testing showed that the SVCSChSNPs exhibited greater inhibition of proliferation in HepG2 cells and high cellular uptake through ASGPR-mediated endocytosis. The in vitro dissolution profile was 2.1-fold greater than that of pure SV suspension. Furthermore, in vivo oral pharmacokinetics revealed that the obtained NPs enhanced the bioavailability of SV by up to 2- and 1.6-fold for SV and SVA, respectively, compared to the pure SV suspension. These findings demonstrated that hepatic-targeted CSChSNPs delivering SV could potentially serve as a promising platform for HCC and other liver-related diseases.

10.
J Membr Biol ; 252(6): 527-539, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31375855

RESUMO

Intracellular compartment drug delivery is a promising strategy for the treatment of diseases. By this way, medicines can delivered to particular intracellular compartments. This maximizes the therapeutic efficacy and safety of medicines, particularly of anticancer and antiviral drugs. Intracellular compartment drug delivery is either indirectly by targeting of cell nucleus as central compartment of the cell or directly through the targeting of compartments itself. Drugs or nanoshuttles labeled with compartment's localization signal represent a smart tactic for subcellular compartment targeting. There are several boundaries prevent the arrival of shuttles to the specified intracellular compartments. These boundaries include selective permeability of biomembranes, efflux transporters, and lysosomes. The utilization of specific ligands during design of drug delivery nanoshuttles permits the targeting of specified intracellular compartment. Therefore drugs targeting could correct the diseases associated organelles. This review highlights the direct targeting of the medicines into subcellular compartment as a promising therapeutic strategy.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Citoplasma/metabolismo , Humanos , Organelas/metabolismo
11.
Molecules ; 24(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641899

RESUMO

Flexible liposomes (FLs) were developed as promising nano-carriers for anticancer drugs. Coating them with chitosan (CS) could improve their drug delivery properties. The aim of this study was to investigate the physicochemical characteristics, pharmacokinetics behavior, and cytotoxic efficacy of docetaxel (DTX)-loaded CS-coated FLs (C-FLs). DTX-loaded FLs and C-FLs were produced via thin-film evaporation and electrostatic deposition methods, respectively. To explore their physicochemical characterization, the particle size, zeta potential, encapsulation efficiency (EE%), morphology, and DTX release profiles were determined. In addition, pharmacokinetic studies were performed, and cytotoxic effect was assessed using colon cancer cells (HT29). Various FLs, dependent on the type of surfactant, were formed with particle sizes in the nano-range, 137.6 ± 6.3 to 238.2 ± 14.2 nm, and an EE% of 59⁻94%. Moreover, the zeta potential shifted from a negative to a positive value for C-FL with increased particle size and EE%, and the in vitro sustained-release profiles of C-FL compared to those of FL were evident. The optimized C-FL containing sodium deoxycholate (NDC) and dicetyl phosphate (DP) elicited enhanced pharmacokinetic parameters and cytotoxic efficiency compared to those of the uncoated ones and Onkotaxel®. In conclusion, this approach offers a promising solution for DTX delivery.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Quitosana , Docetaxel/administração & dosagem , Docetaxel/farmacocinética , Lipossomos , Animais , Antineoplásicos/química , Disponibilidade Biológica , Fenômenos Químicos , Quitosana/química , Docetaxel/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Lipossomos/química , Tamanho da Partícula
12.
Saudi Pharm J ; 27(5): 603-611, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31297013

RESUMO

Surface-coated nanocarriers have been extensively used to enhance the delivery of anticancer drugs and improve their therapeutic index. In this study, chitosan (CS)-coated flexible liposomes (chitosomes) containing 5-fluorouracil (5-FU) were designed and characterized for use as a novel approach to target colon cancer cells. 5-FU-loaded flexible liposomes (F1, F2, and F3) and 5-FU-loaded chitosomes (F4, F5, and F6) were prepared using film hydration and electrostatic deposition techniques, respectively. The particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE%), morphology, and in vitro drug release ability, and cytotoxicity of the formulations were determined. The results revealed that the size of chitosomes ranged from 212 to 271 nm with a positive surface charge of 6.1 to 14.7 mV, whereas the particle size of liposomes ranged from 108 to 234 nm with negative surface charges of -2.3 to -16.3. F3 and F6 had a spherical shape with a rough surface structure. The in vitro drug release study revealed that chitosomes retard 5-FU release as opposed to the 5-FU solution and liposomes. The cytotoxicity study using a colon cancer cell line (HT-29) showed that 5-FU-loaded chitosomes were more effective in killing cancer cells in a sustained manner than liposomes and the 5-FU solution. Chitosomes were therefore successfully developed as nanocarriers of 5-FU, with potential cytotoxicity for colorectal cancer cells.

13.
J Membr Biol ; 250(6): 605-616, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29127486

RESUMO

Hybrid vesicles are considered as a bridge between natural nanosystems (NNSs) and artificial nanosystems (ANSs). NNSs are extracellular vesicles (EVs), membranous, bio-formed endogenously, which act as endogenous cargoes, and reflecting cellular dynamics. EVs have cellular tropism, permeate tight junctions, and are non-immunogenic. EVs are used as tools in the development of diagnostic and therapeutic agents. ANSs can induce biogenesis of hybrid vesicles as promising smart diagnostic agents, and innovative drug cargoes. EVs can encapsulate small molecules, macromolecules, and ANSs. The manipulation of EVs during biogenesis was suggested for engineering hybrid EVs. This review article highlights the role of ANSs in the biogenesis of NNSs, and introduces hybrid nanosystems research.


Assuntos
Vesículas Extracelulares/química , Micropartículas Derivadas de Células/química , Sistemas de Liberação de Medicamentos/métodos , Exocitose/fisiologia
14.
Saudi Pharm J ; 25(1): 8-17, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28223857

RESUMO

Nanovesicles (NVs) represent a novel transporter for cell signals to modify functions of target cells. Therefore, NVs play many roles in both physiological and pathological processes. This report highlights biogenesis, composition and biological roles of erythrocytes derived nanovesicles (EDNVs). Furthermore, we address utilization of EDNVs as novel drug delivery cargo as well as therapeutic target. EDNVs are lipid bilayer vesicles rich in phospholipids, proteins, lipid raft, and hemoglobin. In vivo EDNVs biogenesis is triggered by an increase of intracellular calcium levels, ATP depletion and under effect of oxidative stress conditions. However, in vitro production of EDNVs can be achieved via hypotonic treatment and extrusion of erythrocyte. NVs can be used as biomarkers for diagnosis, monitoring of therapy and drug delivery system. Many therapeutic agents are suggested to decrease NVs biogenesis.

15.
Saudi Pharm J ; 25(1): 120-127, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28223872

RESUMO

This study aimed to evaluate the protective effect of chitosan (CS) against hypercholesterolemia (HC) induced arginase activation and disruption of nitric oxide (NO) biosynthesis using erythrocytes as cellular model. Human erythrocytes were isolated and classified into eight groups. Next, cells were treated with l-arginine (l-ARG), Nω-nitro-l-arginine methyl ester (l-NAME), CS or CS + l-ARG in the presence of normal plasma or cholesterol enriches plasma. Then, erythrocytes were incubated at 37 °C for 24 h. The present results revealed that, HC induced significant increase of cholesterol inclusion into erythrocytes membrane compared to control. Moreover, HC caused significant decrease in nitric oxide synthase (NOS) activity similar to l-NAME; however, arginase activity and arginase/NOS ratio significantly increased compared to control. On contrast, treatment of HC with, l-arginine, CS or CS plus l-arginine prevents HC induced cholesterol loading into erythrocytes membrane, NOS inhibition and arginase activation. This study suggested that CS could be protective agent against HC induced disruption of erythrocyte's oxidative status and arginase activation.

16.
Tumour Biol ; 37(10): 13927-13939, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27488117

RESUMO

IQ motif-containing GTPase-activating proteins (IQGAPs) belong to a conserved family, and they are involved in various intracellular processes. IQGAP1 is expressed in all cells, while IQGAP2 and IQGAP3 are mainly expressed in hepatic cells. IQGAP1 has been suggested to be an oncogene, while IQGAP2 is considered a tumor-suppressor gene. However, the relationship between RAS family genes and IQGAP genes remains unclear. We recently demonstrated this interaction in a chemically induced mouse liver cancer. In this study, IQGAP1 expression was partially silenced in human hepatocellular carcinoma (HepG2) cells. We investigated the impact of IQGAP1 silencing on the interactions of IQGAP and RAS with several apoptotic proteins, including caspase-3 (CASP3), BCL2-associated X protein (BAX), and B-cell leukemia/lymphoma 2 (BCL2). Additionally, we investigated the effects of the interactions of these genes on cell viability, proliferation, apoptosis, and invasive capacity. IQGAP1 siRNA-treated HepG2 cells showed lower invasive capacity than the control cells, and this reduction was time- and vector concentration-dependent. In addition, IQGAP1 silencing resulted in significantly lower IQGAP1 level and subsequently higher IQGAP2 and IQGAP3 expression in HepG2 cells than in the control. Flow cytometry analyses indicated that the silencing of IQGAP1 can induce early and late apoptosis in HepG2 cells. Additionally, IQGAP2, IQGAP3, CASP3, and BAX were upregulated whereas IQGAP1 and BCL2 were downregulated in the siRNA-treated cells. Furthermore, we observed that the mRNA levels of HRAS, KRAS, NRAS, and MRAS decreased upon IQGAP1 silencing. These findings indicate that IQGAP1 potentially regulates the expression of IQGAP and RAS gene families and demonstrate its regulatory role in the apoptotic network. Taken together, our findings suggest that IQGAP1 silencing plays crucial roles in the apoptosis of HepG2 cells and lowers their proliferative and invasive capacities.


Assuntos
Apoptose , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular , Neoplasias Hepáticas/patologia , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Biomarcadores Tumorais/genética , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Citometria de Fluxo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Invasividade Neoplásica , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Proteínas Ativadoras de ras GTPase/genética
17.
Mutagenesis ; 31(2): 137-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26399706

RESUMO

Dexrazoxane is the only clinically approved cardioprotectant against anthracyclines-induced cardiotoxicity. Thus, detailed evaluation of the genotoxic potential of dexrazoxane and anthracyclines combination is essential to provide more insights into genotoxic and anti-genotoxic alterations that may play a role in the development of the secondary malignancies after treatment with anthracyclines. Thus, our aim was to determine whether non-genotoxic doses of dexrazoxane in combination with the anthracycline, epirubicin can modulate epirubicin-induced genotoxicity and apoptosis in somatic cells. Bone marrow micronucleus test complemented with fluorescence in situ hybridization assay and comet assay were performed to assess the genotoxicity of dexrazoxane and/or epirubicin. Apoptosis was analysed by using the annexin V assay and the occurrence of the hypodiploid DNA content. Generation of reactive oxygen species was also assessed in bone marrow by using the oxidant-sensing fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate. Dexrazoxane was neither genotoxic nor apoptogenic in mice at a single dose of 75 or 150mg/kg. Moreover, it has been shown that dexrazoxane affords significant protection against epirubicin-induced genotoxicity and apoptosis in the bone marrow cells in a dose-dependent manner. Epirubicin induced marked generation of intracellular reactive oxygen species and prior administration of dexrazoxane ahead of epirubicin challenge ameliorated accumulation of these free radicals. It is thus concluded that dexrazoxane can be safely combined with epirubicin and that pre-treatment with dexrazoxane attenuates epirubicin-induced generation of reactive oxygen species and subsequent genotoxicity and apoptosis. Thus, epirubicin-induced genotoxicity can be effectively mitigated by using dexrazoxane.


Assuntos
Antineoplásicos/toxicidade , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Cardiotônicos/farmacologia , Dexrazoxano/farmacologia , Epirubicina/toxicidade , Testes de Mutagenicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinógenos/toxicidade , Ensaio Cometa , Quebras de DNA/efeitos dos fármacos , Masculino , Camundongos , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos , Testes de Mutagenicidade/métodos , Espécies Reativas de Oxigênio/metabolismo
18.
Saudi Pharm J ; 24(1): 74-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26903771

RESUMO

Chitosan nanogels (CNG) are developed as one of the most promising carriers for cancer targeting. However, these carriers are rapidly eliminated from circulation by reticuloendothelial system (RES), which limits their application. Therefore, erythrocytes (ER) loaded CNG as multifunctional carrier may overcome the massive elimination of nanocarriers by RES. In this study, erythrocytes loaded pravastatin-chitosan nanogels (PR-CNG-ER) were utilized as a novel drug carrier to target liver cancer. Thus, PR-CNG formula was developed in nanosize, with good entrapment efficiency, drug loading and sustained release over 48 h. Then, PR-CNG loaded into ER were prepared by hypotonic preswelling technique. The resulting PR-CNG-ER showed 36.85% of entrapment efficiency, 66.82% of cell recovery and release consistent to that of hemoglobin over 48 h. Moreover, PR-CNG-ER exhibited negative zeta potential, increasing of hemolysis percent, marked phosphatidylserine exposure and stomatocytes shape compared to control unloaded erythrocytes. PR-CNG-ER reduced cells viability of HepG2 cells line by 28% compared to unloaded erythrocytes (UER). These results concluded that PR-CNG-ER are promising drug carriers to target liver cancer.

19.
Pathophysiology ; 22(1): 49-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25547049

RESUMO

High or toxic doses of acetaminophen (APAP), a mild analgesic and antipyretic drug, can cause life-threatening hepatic and renal dysfunction. This study is designed to investigate the potential protective role of quercetin to attenuate the hepatorenal toxicity induced by a high single oral dose (3g/kg) of APAP in rats. Three main groups of Sprague-Dawley rats were used: quercetin, APAP and quercetin plus APAP-receiving animals. Corresponding control animals were also used. Interestingly, oral supplementation of quercetin (15mg/kg/day) prior to APAP intoxication dramatically reduced APAP-induced hepatorenal toxicity as evidenced by measuring serum lipid profile, total protein, urea, creatinine, ALT, AST, ALP, G-GT and liver tissue content of TC and TG. Quercetin treatment markedly prevented the generation of TBARS and PCC with substantial improvement in terms of GSH and activities of antioxidant enzymes in both liver and kidney homogenates. The relationship between quercetin and NO levels which is still a matter of debate, was also investigated. NO levels in serum, liver and kidney tissues were significantly inhibited in quercetin pre-treated animals. Furthermore, quercetin administration significantly inhibited the reduction of liver and kidney contents of ATP parcels associated with this hepatorenal toxicity. These results suggest that the protective role of quercetin in the prevention of APAP-induced hepatorenal toxicity in rats was associated with the decrease of oxidative and nitrosative stress in hepatic and renal tissues as well as its capacity to improve the mitochondrial energy production. However, clinical studies are warranted to investigate such an effect in human subjects.

20.
Saudi Pharm J ; 23(1): 48-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25685043

RESUMO

In this study, the in vitro effects of paclitaxel (PTX) and Cremophor-EL (CrEL) on blood viscosity and oxidative stress markers were investigated. Whole-blood samples were collected from healthy volunteers and co-incubated with PTX, CrEL or their combination then compared with control blood samples. After a 24 h incubation time, the whole-blood viscosity (WBV), erythrocyte sedimentation rate (ESR), levels of whole-blood malondialdehyde (MDA), protein carbonyl content (PCC) and reduced glutathione (GSH) were determined. Moreover, plasma nitrite and plasma sialic acid (SA) values were measured. The present results revealed that the incubation of blood samples with PTX, CrEL or PTX plus CrEL significantly increased the values of WBV, ESR, MDA and PCC compared to control samples. In contrast, a significant decrease in levels of GSH, SA and nitrite was observed after incubation of blood samples with tested agents compared to control. The effects of tested agents on the measured parameters were more pronounced in the case of blood samples treated with PTX plus CrEL. The present study demonstrates that PTX-induced oxidative stress is associated with an increase of WBV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA