Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Sci Technol ; 57(22): 8245-8255, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219950

RESUMO

The recent concurrence of electrical grid failure events in time with extreme temperatures is compounding the population health risks of extreme weather episodes. Here, we combine simulated heat exposure data during historical heat wave events in three large U.S. cities to assess the degree to which heat-related mortality and morbidity change in response to a concurrent electrical grid failure event. We develop a novel approach to estimating individually experienced temperature to approximate how personal-level heat exposure changes on an hourly basis, accounting for both outdoor and building-interior exposures. We find the concurrence of a multiday blackout event with heat wave conditions to more than double the estimated rate of heat-related mortality across all three cities, and to require medical attention for between 3% (Atlanta) and more than 50% (Phoenix) of the total urban population in present and future time periods. Our results highlight the need for enhanced electrical grid resilience and support a more spatially expansive use of tree canopy and high albedo roofing materials to lessen heat exposures during compound climate and infrastructure failure events.


Assuntos
Clima , Temperatura Alta , Cidades , Temperatura , Morbidade , Mortalidade
2.
Sci Total Environ ; 811: 151326, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757097

RESUMO

Cities are facing the twin pressures of greenhouse gas driven climatic warming and locally induced urban heating. These pressures are threatening populations that are sensitive to extreme heat due to sociodemographic factors including economic means. Heat-reducing infrastructure adaptation measures such as reflective "cool" materials can reduce urban temperatures. Here we examine the needs-based equity implications associated with heat-reducing cool roofing in Maricopa County, Arizona through application of high-resolution urban-atmospheric simulations. We simulate heatwave conditions and evaluate the air temperature reduction arising from uniform cool roof implementation (i.e., the entire urbanized county), and contrast results against simulated cooling impacts of needs-based targeted cool roof implementation in sociodemographically heat sensitive areas. We find that installing cool roofs uniformly, rather than in a targeted fashion, provides on average 0.66 °C reduction in the highest heat sensitivity area and 0.39 °C temperature reduction in the lowest heat sensitivity area due in part to a higher roof area density in the heat sensitive area. Targeting cool roof implementation yields 0.45 °C cooling in the most sensitive areas compared to 0.22 °C cooling in the least sensitive areas, meaning that needs-based targeted cool roofs in high sensitivity areas provide more relief than cool roofs targeted at low sensitivity areas, thus providing more cooling where it is most needed. Needs-based targeted implementation has the dual benefits of concurrently producing more than twice as much cooling and reducing heat exposure for the largest absolute number of individuals in the densely populated, highly heat sensitive areas. Targeting cool roof implementation to high heat sensitivity areas, however, does not achieve thermally equal temperatures in Maricopa County because the high sensitivity areas were substantially warmer than low sensitivity areas prior to implementation. This study illustrates the utility of a new "Targeted Urban Heat Adaptation" (TUHA) framework to assess needs-based equity implications of heat-reducing strategies and underscores its importance by examining the impacts of cooling interventions across sociodemographically heterogeneous urban environments.


Assuntos
Calor Extremo , Cidades , Temperatura Baixa , Temperatura Alta , Humanos , Fatores Sociodemográficos
3.
Ecol Appl ; 21(7): 2637-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22073649

RESUMO

Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the benefits, costs, spatial structure, and temporal trajectory for the use of ecosystem services to moderate climate extremes. Increasing vegetation is one strategy for moderating regional climate changes in urban areas and simultaneously providing multiple ecosystem services. However, vegetation has economic, water, and social equity implications that vary dramatically across neighborhoods and need to be managed through informed environmental policies.


Assuntos
Cidades , Ecossistema , Transtornos de Estresse por Calor , Temperatura Alta , Água , Arizona , Planejamento Ambiental , Exposição Ambiental , Monitoramento Ambiental , Humanos , Renda , Plantas , Fatores de Risco , Saúde da População Urbana , População Urbana
4.
Environ Int ; 146: 106271, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395929

RESUMO

A more precise understanding of individual-level heat exposure may be helpful to advance knowledge about heat-health impacts and effective intervention strategies, especially in light of projected increases in the severity and frequency of extreme heat events. We developed and interrogated different metrics for quantifying personal heat exposure and explored their association with social risk factors. To do so, we collected simultaneous personal heat exposure data from 64 residents of metropolitan Phoenix, Arizona. From these data, we derived five exposure metrics: Mean Individually Experienced Temperature (IET), Maximum IET, Longest Exposure Period (LEP), Percentage Minutes Above Threshold (PMAT), and Degree Minutes Above Threshold (DMAT), and calculated each for Day Hours, Night Hours, and All Hours of the study period. We then calculated effect sizes for the associations between those metrics and four social risk factors: neighborhood vulnerability, income, home cooling type, and time spent outside. We also investigated exposure misclassification by constructing linear regression models of observations from a regional weather station and hourly IET for each participant. Our analysis revealed that metric choice and timeframe added depth and nuance to our understanding of differences in exposure within and between populations. We found that time spent outside and income were the two risk factors most strongly associated with personal heat exposure. We also found evidence that Mean IET is a good, but perhaps not optimal, measure for assessing group differences in exposure. Most participants' IETs were poorly correlated with regional weather station observations and the slope and correlation coefficient for linear regression models between regional weather station data and IETs varied widely among participants. We recommend continued efforts to investigate personal heat exposure, especially in combination with physiological indicators, to improve our understanding of links between ambient temperatures, social risk factors, and health outcomes.


Assuntos
Benchmarking , Temperatura Alta , Humanos , Fatores de Risco , Temperatura , Tempo (Meteorologia)
5.
Environ Manage ; 44(5): 921-37, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19777295

RESUMO

As a dominant land use in urban ecosystems, residential yards impact water and other environmental resources. Converting thirsty lawns into alternative landscapes is one approach to water conservation, yet barriers such as cultural norms reinforce the traditional lawn. Meanwhile, the complex social and ecological implications of yard choices complicate programs aimed at changing grass and other yard features for particular purposes. In order to better understand individual landscape decisions, we qualitatively examined residents' rationales for their preferred yard types in the desert metropolis of Phoenix, Arizona. After briefly presenting landscape choices across two survey samples, the dominant reasons for preferences are discussed: appearance, maintenance, environment, recreation, microclimate, familiarity, and health/safety. Three broader analytical themes emerged from these descriptive codes: (1) residents' desires for attractive, comfortable landscapes of leisure encompassing pluralistic tastes, lifestyles, and perceptions; (2) the association of environmental benefits and impacts with different landscape types involving complex social and ecological tradeoffs; and (3) the cultural legacies evident in modern landscape choices, especially in terms of a dichotomous human-nature worldview among long-time residents of the Phoenix oasis. Given these findings, programs aimed at landscape change must recognize diverse preferences and rationalization processes, along with the perceived versus actual impacts and tradeoffs of varying yard alternatives.


Assuntos
Conservação dos Recursos Naturais , Clima Desértico , Jardinagem , Arizona , Tomada de Decisões , Ecossistema , Humanos , Estilo de Vida , Poaceae , Racionalização
6.
Soc Sci Med ; 63(11): 2847-63, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16996668

RESUMO

Human exposure to excessively warm weather, especially in cities, is an increasingly important public health problem. This study examined heat-related health inequalities within one city in order to understand the relationships between the microclimates of urban neighborhoods, population characteristics, thermal environments that regulate microclimates, and the resources people possess to cope with climatic conditions. A simulation model was used to estimate an outdoor human thermal comfort index (HTCI) as a function of local climate variables collected in 8 diverse city neighborhoods during the summer of 2003 in Phoenix, USA. HTCI is an indicator of heat stress, a condition that can cause illness and death. There were statistically significant differences in temperatures and HTCI between the neighborhoods during the entire summer, which increased during a heat wave period. Lower socioeconomic and ethnic minority groups were more likely to live in warmer neighborhoods with greater exposure to heat stress. High settlement density, sparse vegetation, and having no open space in the neighborhood were significantly correlated with higher temperatures and HTCI. People in warmer neighborhoods were more vulnerable to heat exposure because they had fewer social and material resources to cope with extreme heat. Urban heat island reduction policies should specifically target vulnerable residential areas and take into account equitable distribution and preservation of environmental resources.


Assuntos
Clima , Transtornos de Estresse por Calor/prevenção & controle , Características de Residência , Adolescente , Adulto , Idoso , Arizona , Criança , Pré-Escolar , Exposição Ambiental , Humanos , Pessoa de Meia-Idade
7.
Environ Health Perspect ; 124(2): 176-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26219102

RESUMO

BACKGROUND: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events. OBJECTIVES: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season. METHODS: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature-health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different "trigger points" at which heat-health intervention measures might be activated. RESULTS: We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures, and there were several times more of those events than there were deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22 °C) across multiple health events and diagnoses. CONCLUSION: Consideration of multiple health events and diagnoses together with a comprehensive approach to identifying threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve the public health response to a problem that is projected to worsen in the coming decades.


Assuntos
Calor Extremo/efeitos adversos , Transtornos de Estresse por Calor/mortalidade , Tempo (Meteorologia) , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Arizona/epidemiologia , Criança , Pré-Escolar , Transtornos de Estresse por Calor/etiologia , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Morbidade , Análise de Regressão , Estações do Ano , Adulto Jovem
8.
Int J Environ Res Public Health ; 11(3): 3304-26, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24658410

RESUMO

In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages <65 and ≥ 65 during the months May-October for years 2000-2008. The most robust relationship was between ATmax on day of death and mortality from direct exposure to high environmental heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90-97 °F; 32.2-36.1 °C) were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C). Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C) with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C) and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C) and males <65 years (ATmax = 102 °F; 38.9 °C). Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.


Assuntos
Cidades/estatística & dados numéricos , Transtornos de Estresse por Calor/mortalidade , Temperatura Alta/efeitos adversos , Mortalidade , Idoso , Arizona , Causas de Morte , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Environ Health Perspect ; 121(2): 197-204, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23164621

RESUMO

BACKGROUND: Most heat-related deaths occur in cities, and future trends in global climate change and urbanization may amplify this trend. Understanding how neighborhoods affect heat mortality fills an important gap between studies of individual susceptibility to heat and broadly comparative studies of temperature-mortality relationships in cities. OBJECTIVES: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000-2008). METHODS: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to map vulnerability and residential addresses of persons who died from heat exposure in 2,081 census block groups. Binary logistic regression and spatial analysis were used to associate deaths with neighborhoods. RESULTS: Neighborhood scores on three factors-socioeconomic vulnerability, elderly/isolation, and unvegetated area-varied widely throughout the study area. The preferred model (based on fit and parsimony) for predicting the odds of one or more deaths from heat exposure within a census block group included the first two factors and surface temperature in residential neighborhoods, holding population size constant. Spatial analysis identified clusters of neighborhoods with the highest heat vulnerability scores. A large proportion of deaths occurred among people, including homeless persons, who lived in the inner cores of the largest cities and along an industrial corridor. CONCLUSIONS: Place-based indicators of vulnerability complement analyses of person-level heat risk factors. Surface temperature might be used in Maricopa County to identify the most heat-vulnerable neighborhoods, but more attention to the socioecological complexities of climate adaptation is needed.


Assuntos
Transtornos de Estresse por Calor/mortalidade , Características de Residência , Arizona/epidemiologia , Feminino , Sistemas de Informação Geográfica , Humanos , Masculino , Fatores de Risco , Fatores Socioeconômicos
10.
PLoS One ; 8(5): e62596, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734174

RESUMO

BACKGROUND: Prior research shows that work in agriculture and construction/extraction occupations increases the risk of environmental heat-associated death. PURPOSE: To assess the risk of environmental heat-associated death by occupation. METHODS: This was a case-control study. Cases were heat-caused and heat-related deaths occurring from May-October during the period 2002-2009 in Maricopa County, Arizona. Controls were selected at random from non-heat-associated deaths during the same period in Maricopa County. Information on occupation, age, sex, and race-ethnicity was obtained from death certificates. Logistic regression analysis was used to estimate odds ratios for heat-associated death. RESULTS: There were 444 cases of heat-associated deaths in adults (18+ years) and 925 adult controls. Of heat-associated deaths, 332 (75%) occurred in men; a construction/extraction or agriculture occupation was described on the death certificate in 115 (35%) of these men. In men, the age-adjusted odds ratios for heat-associated death were 2.32 (95% confidence interval 1.55, 3.48) in association with construction/extraction and 3.50 (95% confidence interval 1.94, 6.32) in association with agriculture occupations. The odds ratio for heat-associated death was 10.17 (95% confidence interval 5.38, 19.23) in men with unknown occupation. In women, the age-adjusted odds ratio for heat-associated death was 6.32 (95% confidence interval 1.48, 27.08) in association with unknown occupation. Men age 65 years and older in agriculture occupations were at especially high risk of heat-associated death. CONCLUSION: The occurrence of environmental heat-associated death in men in agriculture and construction/extraction occupations in a setting with predictable periods of high summer temperatures presents opportunities for prevention.


Assuntos
Causas de Morte , Temperatura Alta/efeitos adversos , Exposição Ocupacional/efeitos adversos , Ocupações , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Agricultura , Arizona/epidemiologia , Estudos de Casos e Controles , Indústria da Construção , Atestado de Óbito , Meio Ambiente , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Saúde Pública/estatística & dados numéricos , Vigilância em Saúde Pública/métodos , Análise de Regressão , Fatores de Risco , Estações do Ano , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA