Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nucleic Acids Res ; 51(8): 3754-3769, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014002

RESUMO

The N-(2-deoxy-d-erythro-pentofuranosyl)-urea DNA lesion forms following hydrolytic fragmentation of cis-5R,6S- and trans-5R,6R-dihydroxy-5,6-dihydrothymidine (thymine glycol, Tg) or from oxidation of 7,8-dihydro-8-oxo-deoxyguanosine (8-oxodG) and subsequent hydrolysis. It interconverts between α and ß deoxyribose anomers. Synthetic oligodeoxynucleotides containing this adduct are efficiently incised by unedited (K242) and edited (R242) forms of the hNEIL1 glycosylase. The structure of a complex between the active site unedited mutant CΔ100 P2G hNEIL1 (K242) glycosylase and double-stranded (ds) DNA containing a urea lesion reveals a pre-cleavage intermediate, in which the Gly2 N-terminal amine forms a conjugate with the deoxyribose C1' of the lesion, with the urea moiety remaining intact. This structure supports a proposed catalytic mechanism in which Glu3-mediated protonation of O4' facilitates attack at deoxyribose C1'. The deoxyribose is in the ring-opened configuration with the O4' oxygen protonated. The electron density of Lys242 suggests the 'residue 242-in conformation' associated with catalysis. This complex likely arises because the proton transfer steps involving Glu6 and Lys242 are hindered due to Glu6-mediated H-bonding with the Gly2 and the urea lesion. Consistent with crystallographic data, biochemical analyses show that the CΔ100 P2G hNEIL1 (K242) glycosylase exhibits a residual activity against urea-containing dsDNA.


Assuntos
DNA Glicosilases , Reparo do DNA , Desoxirribose , Ureia , Desoxirribose/química , DNA/química , Dano ao DNA , DNA Glicosilases/metabolismo , Humanos
2.
Nucleic Acids Res ; 50(13): 7721-7738, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819202

RESUMO

The ribose 2'-hydroxyl is the key chemical difference between RNA and DNA and primary source of their divergent structural and functional characteristics. Macromolecular X-ray diffraction experiments typically do not reveal the positions of hydrogen atoms. Thus, standard crystallography cannot determine 2'-OH orientation (H2'-C2'-O2'-HO2' torsion angle) and its potential roles in sculpting the RNA backbone and the expansive fold space. Here, we report the first neutron crystal structure of an RNA, the Escherichia coli rRNA Sarcin-Ricin Loop (SRL). 2'-OD orientations were established for all 27 residues and revealed O-D bonds pointing toward backbone (O3', 13 observations), nucleobase (11) or sugar (3). Most riboses in the SRL stem region show a 2'-OD backbone-orientation. GAGA-tetraloop riboses display a 2'-OD base-orientation. An atypical C2'-endo sugar pucker is strictly correlated with a 2'-OD sugar-orientation. Neutrons reveal the strong preference of the 2'-OH to donate in H-bonds and that 2'-OH orientation affects both backbone geometry and ribose pucker. We discuss 2'-OH and water molecule orientations in the SRL neutron structure and compare with results from a solution phase 10 µs MD simulation. We demonstrate that joint cryo-neutron/X-ray crystallography offers an all-in-one approach to determine the complete structural properties of RNA, i.e. geometry, conformation, protonation state and hydration structure.


Assuntos
RNA , Ribose/química , Água , Cristalografia por Raios X , Ligação de Hidrogênio , Nêutrons , Conformação de Ácido Nucleico , RNA/química , Água/química
3.
J Am Chem Soc ; 145(36): 19691-19706, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638886

RESUMO

Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.


Assuntos
Ácidos Nucleicos , Animais , Camundongos , Ratos , RNA Interferente Pequeno , Nucleotídeos , Interferência de RNA , Acetilgalactosamina
4.
Nucleic Acids Res ; 49(8): 4782-4792, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872377

RESUMO

Even in high-quality X-ray crystal structures of oligonucleotides determined at a resolution of 1 Å or higher, the orientations of first-shell water molecules remain unclear. We used cryo neutron crystallography to gain insight into the H-bonding patterns of water molecules around the left-handed Z-DNA duplex [d(CGCGCG)]2. The neutron density visualized at 1.5 Å resolution for the first time allows us to pinpoint the orientations of most of the water molecules directly contacting the DNA and of many second-shell waters. In particular, H-bond acceptor and donor patterns for water participating in prominent hydration motifs inside the minor groove, on the convex surface or bridging nucleobase and phosphate oxygen atoms are finally revealed. Several water molecules display entirely unexpected orientations. For example, a water molecule located at H-bonding distance from O6 keto oxygen atoms of two adjacent guanines directs both its deuterium atoms away from the keto groups. Exocyclic amino groups of guanine (N2) and cytosine (N4) unexpectedly stabilize waters H-bonded to O2 keto oxygens from adjacent cytosines and O6 keto oxygens from adjacent guanines, respectively. Our structure offers the most detailed view to date of DNA solvation in the solid-state undistorted by metal ions or polyamines.


Assuntos
Cristalografia/métodos , DNA Forma Z/química , Água/química , Crioprotetores/química , Cristalografia por Raios X , DNA Forma Z/síntese química , Ligação de Hidrogênio , Modelos Moleculares , Difração de Nêutrons/métodos , Nêutrons , Conformação de Ácido Nucleico , Fosfatos/química
5.
Nucleic Acids Res ; 49(19): 10851-10867, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34648028

RESUMO

We recently reported that RNAi-mediated off-target effects are important drivers of the hepatotoxicity observed for a subset of GalNAc-siRNA conjugates in rodents, and that these findings could be mitigated by seed-pairing destabilization using a single GNA nucleotide placed within the seed region of the guide strand. Here, we report further investigation of the unique and poorly understood GNA/RNA cross-pairing behavior to better inform GNA-containing siRNA design. A reexamination of published GNA homoduplex crystal structures, along with a novel structure containing a single (S)-GNA-A residue in duplex RNA, indicated that GNA nucleotides universally adopt a rotated nucleobase orientation within all duplex contexts. Such an orientation strongly affects GNA-C and GNA-G but not GNA-A or GNA-T pairing in GNA/RNA heteroduplexes. Transposition of the hydrogen-bond donor/acceptor pairs using the novel (S)-GNA-isocytidine and -isoguanosine nucleotides could rescue productive base-pairing with the complementary G or C ribonucleotides, respectively. GalNAc-siRNAs containing these GNA isonucleotides showed an improved in vitro activity, a similar improvement in off-target profile, and maintained in vivo activity and guide strand liver levels more consistent with the parent siRNAs than those modified with isomeric GNA-C or -G, thereby expanding our toolbox for the design of siRNAs with minimized off-target activity.


Assuntos
Adenosina/química , Citidina/química , Glicóis/química , Guanosina/química , Oligorribonucleotídeos/química , RNA de Cadeia Dupla/química , RNA Interferente Pequeno/química , Acetilgalactosamina , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Pareamento de Bases , Células COS , Chlorocebus aethiops , Dimetilformamida/análogos & derivados , Dimetilformamida/química , Etilaminas/química , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Ligação de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Compostos Organofosforados/química , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/genética , Pré-Albumina/metabolismo , Cultura Primária de Células , Estabilidade de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
PLoS Comput Biol ; 17(11): e1009555, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748541

RESUMO

The use of unnatural fluorogenic molecules widely expands the pallet of available genetically encoded fluorescent imaging tools through the design of fluorogen activating proteins (FAPs). While there is already a handful of such probes available, each of them went through laborious cycles of in vitro screening and selection. Computational modeling approaches are evolving incredibly fast right now and are demonstrating great results in many applications, including de novo protein design. It suggests that the easier task of fine-tuning the fluorogen-binding properties of an already functional protein in silico should be readily achievable. To test this hypothesis, we used Rosetta for computational ligand docking followed by protein binding pocket redesign to further improve the previously described FAP DiB1 that is capable of binding to a BODIPY-like dye M739. Despite an inaccurate initial docking of the chromophore, the incorporated mutations nevertheless improved multiple photophysical parameters as well as the overall performance of the tag. The designed protein, DiB-RM, shows higher brightness, localization precision, and apparent photostability in protein-PAINT super-resolution imaging compared to its parental variant DiB1. Moreover, DiB-RM can be cleaved to obtain an efficient split system with enhanced performance compared to a parental DiB-split system. The possible reasons for the inaccurate ligand binding pose prediction and its consequence on the outcome of the design experiment are further discussed.


Assuntos
Corantes Fluorescentes/química , Proteínas Luminescentes/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Compostos de Boro/química , Biologia Computacional , Cristalografia por Raios X , Desenho de Fármacos , Fluorescência , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Engenharia de Proteínas/estatística & dados numéricos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Software
7.
Bioorg Med Chem Lett ; 56: 128479, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838649

RESUMO

In this manuscript, we report a series of chiral 6-azaspiro[2.5]octanes and related spirocycles as highly potent and selective antagonists of the muscarinic acetylcholine receptor subtype 4 (mAChR4). Chiral separation and subsequent X-ray crystallographic analysis of early generation analogs revealed the R enantiomer to possess excellent human and rat M4 potency, and further structure-activity relationship (SAR) studies on this chiral scaffold led to the discovery of VU6015241 (compound 19). Compound 19 is characterized by high M4 potency and selectivity across multiple species, excellent aqueous solubility, and moderate brain exposure in rodents after intraperitoneal administration.


Assuntos
Antagonistas Muscarínicos/farmacologia , Receptor Muscarínico M4/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Antagonistas Muscarínicos/síntese química , Antagonistas Muscarínicos/química , Receptor Muscarínico M4/metabolismo , Relação Estrutura-Atividade
8.
Nucleic Acids Res ; 48(8): 4028-4040, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170309

RESUMO

In this report, we investigated the hexopyranose chemical modification Altriol Nucleic Acid (ANA) within small interfering RNA (siRNA) duplexes that were otherwise fully modified with the 2'-deoxy-2'-fluoro and 2'-O-methyl pentofuranose chemical modifications. The siRNAs were designed to silence the transthyretin (Ttr) gene and were conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Sense and antisense strands of the parent duplex were synthesized with single ANA residues at each position on the strand, and the resulting siRNAs were evaluated for their ability to inhibit Ttr mRNA expression in vitro. Although ANA residues were detrimental at the 5' end of the antisense strand, the siRNAs with ANA at position 6 or 7 in the seed region had activity comparable to the parent. The siRNA with ANA at position 7 in the seed region was active in a mouse model. An Oligonucleotide with ANA at the 5' end was more stable in the presence of 5'-exonuclease than an oligonucleotide of the same sequence and chemical composition without the ANA modification. Modeling studies provide insight into the origins of regiospecific changes in potency of siRNAs and the increased protection against 5'-exonuclease degradation afforded by the ANA modification.


Assuntos
Acetilgalactosamina/química , Carboidratos/química , Interferência de RNA , RNA Interferente Pequeno/química , Álcoois Açúcares/química , Animais , Células COS , Chlorocebus aethiops , Exorribonucleases , Hepatócitos/metabolismo , Camundongos , Conformação de Ácido Nucleico , Pré-Albumina/genética , Ribonucleotídeos/química
9.
Biochemistry ; 59(49): 4627-4637, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33275419

RESUMO

GNRA (N = A, C, G, or U; R = A or G) tetraloops are common RNA secondary structural motifs and feature a phosphate stacked atop a nucleobase. The rRNA sarcin/ricin loop (SRL) is capped by GApGA, and the phosphate p stacks on G. We recently found that regiospecific incorporation of a single dithiophosphate (PS2) but not a monothiophosphate (PSO) instead of phosphate in the backbone of RNA aptamers dramatically increases the binding affinity for their targets. In the RNA:thrombin complex, the key contribution to the 1000-fold tighter binding stems from an edge-on contact between PS2 and a phenylalanine ring. Here we investigated the consequences of replacing the SRL phosphate engaged in a face-on interaction with guanine with either PS2 or PSO for stability. We found that PS2···G and Rp-PSO···G contacts stabilize modified SRLs compared to the parent loop to unexpected levels: up to 6.3 °C in melting temperature Tm and -4.7 kcal/mol in ΔΔG°. Crystal structures demonstrate that the vertical distance to guanine for the closest sulfur is just 0.05 Å longer on average compared to that of oxygen despite the larger van der Waals radius of the former (1.80 Å for S vs 1.52 Å for O). The higher stability is enthalpy-based, and the negative charge as assessed by a neutral methylphosphonate modification plays only a minor role. Quantum mechanical/molecular mechanical calculations are supportive of favorable dispersion attraction interactions by sulfur making the dominant contribution. A stacking interaction between phosphate and guanine (SRL) or uracil (U-turn) is also found in newly classified RNA tetraloop families besides GNRA.


Assuntos
Motivos de Nucleotídeos , RNA/química , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação de Ácido Nucleico , Fosfatos/química , RNA/genética , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , Termodinâmica
10.
Nucleic Acids Res ; 46(16): 8090-8104, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30107495

RESUMO

Chemical modification is a prerequisite of oligonucleotide therapeutics for improved metabolic stability, uptake and activity, irrespective of their mode of action, i.e. antisense, RNAi or aptamer. Phosphate moiety and ribose C2'/O2' atoms are the most common sites for modification. Compared to 2'-O-substituents, ribose 4'-C-substituents lie in proximity of both the 3'- and 5'-adjacent phosphates. To investigate potentially beneficial effects on nuclease resistance we combined 2'-F and 2'-OMe with 4'-Cα- and 4'-Cß-OMe, and 2'-F with 4'-Cα-methyl modification. The α- and ß-epimers of 4'-C-OMe-uridine and the α-epimer of 4'-C-Me-uridine monomers were synthesized and incorporated into siRNAs. The 4'α-epimers affect thermal stability only minimally and show increased nuclease stability irrespective of the 2'-substituent (H, F, OMe). The 4'ß-epimers are strongly destabilizing, but afford complete resistance against an exonuclease with the phosphate or phosphorothioate backbones. Crystal structures of RNA octamers containing 2'-F,4'-Cα-OMe-U, 2'-F,4'-Cß-OMe-U, 2'-OMe,4'-Cα-OMe-U, 2'-OMe,4'-Cß-OMe-U or 2'-F,4'-Cα-Me-U help rationalize these observations and point to steric and electrostatic origins of the unprecedented nuclease resistance seen with the chain-inverted 4'ß-U epimer. We used structural models of human Argonaute 2 in complex with guide siRNA featuring 2'-F,4'-Cα-OMe-U or 2'-F,4'-Cß-OMe-U at various sites in the seed region to interpret in vitro activities of siRNAs with the corresponding 2'-/4'-C-modifications.


Assuntos
Oligonucleotídeos/química , Estabilidade de RNA/genética , RNA Interferente Pequeno/química , Termodinâmica , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , Fosfatos/química , Interferência de RNA , Ribonucleases/química , Ribose/química , Uridina/química , Uridina/genética
11.
Traffic ; 18(9): 590-603, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28691777

RESUMO

Tepsin is currently the only accessory trafficking protein identified in adaptor-related protein 4 (AP4)-coated vesicles originating at the trans-Golgi network (TGN). The molecular basis for interactions between AP4 subunits and motifs in the tepsin C-terminus have been characterized, but the biological role of tepsin remains unknown. We determined X-ray crystal structures of the tepsin epsin N-terminal homology (ENTH) and VHS/ENTH-like domains. Our data reveal unexpected structural features that suggest key functional differences between these and similar domains in other trafficking proteins. The tepsin ENTH domain lacks helix0, helix8 and a lipid binding pocket found in epsin1/2/3. These results explain why tepsin requires AP4 for its membrane recruitment and further suggest ENTH domains cannot be defined solely as lipid binding modules. The VHS domain lacks helix8 and thus contains fewer helices than other VHS domains. Structural data explain biochemical and biophysical evidence that tepsin VHS does not mediate known VHS functions, including recognition of dileucine-based cargo motifs or ubiquitin. Structural comparisons indicate the domains are very similar to each other, and phylogenetic analysis reveals their evolutionary pattern within the domain superfamily. Phylogenetics and comparative genomics further show tepsin within a monophyletic clade that diverged away from epsins early in evolutionary history (~1500 million years ago). Together, these data provide the first detailed molecular view of tepsin and suggest tepsin structure and function diverged away from other epsins. More broadly, these data highlight the challenges inherent in classifying and understanding protein function based only on sequence and structure.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Sítios de Ligação , Clatrina/metabolismo , Humanos , Estrutura Secundária de Proteína/fisiologia , Ubiquitina/metabolismo , Rede trans-Golgi/química
12.
J Am Chem Soc ; 139(25): 8537-8546, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28570818

RESUMO

Here we report the investigation of glycol nucleic acid (GNA), an acyclic nucleic acid analogue, as a modification of siRNA duplexes. We evaluated the impact of (S)- or (R)-GNA nucleotide incorporation on RNA duplex structure by determining three individual crystal structures. These structures indicate that the (S)-nucleotide backbone adopts a conformation that has little impact on the overall duplex structure, while the (R)-nucleotide disrupts the phosphate backbone and hydrogen bonding of an adjacent base pair. In addition, the GNA-T nucleobase adopts a rotated conformation in which the 5-methyl group points into the minor groove, rather than the major groove as in a normal Watson-Crick base pair. This observation of reverse Watson-Crick base pairing is further supported by thermal melting analysis of GNA-C and GNA-G containing duplexes where it was demonstrated that a higher thermal stability was associated with isoguanine and isocytosine base pairing, respectively, over the canonical nucleobases. Furthermore, it was also shown that GNA nucleotide or dinucleotide incorporation increases resistance against snake venom phosphodiesterase. Consistent with the structural data, modification of an siRNA with (S)-GNA resulted in greater in vitro potencies over identical sequences containing (R)-GNA. A walk of (S)-GNA along the guide and passenger strands of a GalNAc conjugate duplex targeting mouse transthyretin (TTR) indicated that GNA is well tolerated in the seed region of both strands in vitro, resulting in an approximate 2-fold improvement in potency. Finally, these conjugate duplexes modified with GNA were capable of maintaining in vivo potency when subcutaneously injected into mice.


Assuntos
Glicóis/química , Ácidos Nucleicos/química , RNA Interferente Pequeno/química , Animais , Cristalografia por Raios X , Inativação Gênica/efeitos dos fármacos , Concentração Inibidora 50 , Camundongos , Modelos Biológicos , Ácidos Nucleicos Heteroduplexes/química , RNA Interferente Pequeno/farmacologia , Receptores de Albumina/efeitos dos fármacos , Temperatura
13.
J Am Chem Soc ; 139(41): 14542-14555, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28937776

RESUMO

We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'ß) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and ß epimers could be obtained by a nonstereoselective approach starting from 2'-F U. 1H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodified nucleotides, whereas the ß-epimer led to significant destabilization. Both 4'-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4'-OMe substituent and the vicinal 5'- and 3'-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4'α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2'-F U.


Assuntos
Inativação Gênica , Interferência de RNA , Estabilidade de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Desnaturação de Ácido Nucleico , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , RNA Interferente Pequeno/genética , Terapêutica com RNAi , Ribonucleotídeos/genética , Termodinâmica , Uridina/química , Uridina/metabolismo
14.
J Biol Chem ; 290(26): 15921-33, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947374

RESUMO

Like the other Y-family DNA polymerases, human DNA polymerase η (hpol η) has relatively low fidelity and is able to tolerate damage during DNA synthesis, including 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG), one of the most abundant DNA lesions in the genome. Crystal structures show that Arg-61 and Gln-38 are located near the active site and may play important roles in the fidelity and efficiency of hpol η. Site-directed mutagenesis was used to replace these side chains either alone or together, and the wild type or mutant proteins were purified and tested by replicating DNA past deoxyguanosine (G) or 8-oxoG. The catalytic activity of hpol η was dramatically disrupted by the R61M and Q38A/R61A mutations, as opposed to the R61A and Q38A single mutants. Crystal structures of hpol η mutant ternary complexes reveal that polarized water molecules can mimic and partially compensate for the missing side chains of Arg-61 and Gln-38 in the Q38A/R61A mutant. The combined data indicate that the positioning and positive charge of Arg-61 synergistically contribute to the nucleotidyl transfer reaction, with additional influence exerted by Gln-38. In addition, gel filtration chromatography separated multimeric and monomeric forms of wild type and mutant hpol η, indicating the possibility that hpol η forms multimers in vivo.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Motivos de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Humanos , Mutagênese Sítio-Dirigida , Especificidade por Substrato
15.
J Org Chem ; 81(6): 2261-79, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26940174

RESUMO

Although judicious use of chemical modifications has contributed to the success of nucleic acid therapeutics, poor systemic stability remains a major hurdle. The introduction of functional groups around the phosphate backbone can enhance the nuclease resistance of oligonucleotides (ONs). Here, we report the synthesis of enantiomerically pure (R)- and (S)-5'-C-methyl (C5'-Me) substituted nucleosides and their incorporation into ONs. These modifications generally resulted in a decrease in thermal stability of oligonucleotide (ON) duplexes in a manner dependent on the stereoconfiguration at C5' with greater destabilization characteristic of (R)-epimers. Enhanced stability against snake venom phosphodiesterase resulted from modification of the 3'-end of an ON with either (R)- or (S)-C5'-Me nucleotides. The (S)-isomers with different 2'-substituents provided greater resistance against 3'-exonucleases than the corresponding (R)-isomers. Crystal structure analyses of RNA octamers with (R)- or (S)-5'-C-methyl-2'-deoxy-2'-fluorouridine [(R)- or (S)-C5'-Me-2'-FU, respectively] revealed that the stereochemical orientation of the C5'-Me and the steric effects that emanate from the alkyl substitution are the dominant determinants of thermal stability and are likely molecular origins of resistance against nucleases. X-ray and NMR structural analyses showed that the (S)-C5'-Me epimers are spatially and structurally more similar to their natural 5' nonmethylated counterparts than the corresponding (R)-epimers.


Assuntos
Exorribonucleases/química , Oligonucleotídeos/química , Pirimidinas/química , Sequência de Bases , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Estereoisomerismo , Termodinâmica
16.
Bioorg Med Chem Lett ; 26(23): 5757-5764, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327307

RESUMO

Herein, we report the synthesis and structure-activity relationship of a novel series of (R)-4,4-difluoropiperidine core scaffold as dopamine receptor 4 (D4) antagonists. A series of compounds from this scaffold are highly potent against the D4 receptor and selective against the other dopamine receptors. In addition, we were able to confirm the active isomer as the (R)-enantiomer via an X-ray crystal structure.


Assuntos
Antipsicóticos/química , Antipsicóticos/farmacologia , Antagonistas de Dopamina/química , Antagonistas de Dopamina/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Receptores de Dopamina D4/antagonistas & inibidores , Animais , Antipsicóticos/síntese química , Antipsicóticos/farmacocinética , Cristalografia por Raios X , Descoberta de Drogas , Halogenação , Humanos , Isomerismo , Modelos Moleculares , Piperidinas/farmacocinética , Ratos , Receptores de Dopamina D4/química , Receptores de Dopamina D4/metabolismo
17.
Nucleic Acids Res ; 41(4): 2689-97, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275540

RESUMO

The thymine analog 5-chlorouridine, first reported in the 1950s as anti-tumor agent, is known as an effective mutagen, clastogen and toxicant as well as an effective inducer of sister-chromatid exchange. Recently, the first microorganism with a chemically different genome was reported; the selected Escherichia coli strain relies on the four building blocks 5-chloro-2'-deoxyuridine (ClU), A, C and G instead of the standard T, A, C, G alphabet [Marlière,P., Patrouix,J., Döring,V., Herdewijn,P., Tricot,S., Cruveiller,S., Bouzon,M. and Mutzel,R. (2011) Chemical evolution of a bacterium's genome. Angew. Chem. Int. Ed., 50, 7109-7114]. The residual fraction of T in the DNA of adapted bacteria was <2% and the switch from T to ClU was accompanied by a massive number of mutations, including >1500 A to G or G to A transitions in a culture. The former is most likely due to wobble base pairing between ClU and G, which may be more common for ClU than T. To identify potential changes in the geometries of base pairs and duplexes as a result of replacement of T by ClU, we determined four crystal structures of a B-form DNA dodecamer duplex containing ClU:A or ClU:G base pairs. The structures reveal nearly identical geometries of these pairs compared with T:A or T:G, respectively, and no consequences for stability and cleavage by an endonuclease (EcoRI). The lack of significant changes in the geometry of ClU:A and ClU:G base pairs relative to the corresponding native pairs is consistent with the sustained unlimited self-reproduction of E. coli strains with virtually complete T→ClU genome substitution.


Assuntos
DNA de Forma B/química , Uracila/análogos & derivados , Adenina/química , Pareamento de Bases , DNA de Forma B/metabolismo , Desoxirribonuclease EcoRI/metabolismo , Guanina/química , Modelos Moleculares , Ribonuclease H/química , Termodinâmica , Uracila/química
18.
Biochemistry ; 53(4): 755-65, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24447055

RESUMO

The Gram-positive pathogen Staphylococcus aureus is a leading cause of global morbidity and mortality. Like many multi-drug-resistant organisms, S. aureus contains antibiotic-modifying enzymes that facilitate resistance to a multitude of antimicrobial compounds. FosB is a Mn(2+)-dependent fosfomycin-inactivating enzyme found in S. aureus that catalyzes nucleophilic addition of either l-cysteine (l-Cys) or bacillithiol (BSH) to the antibiotic, resulting in a modified compound with no bactericidal properties. The three-dimensional X-ray crystal structure of FosB from S. aureus (FosB(Sa)) has been determined to a resolution of 1.15 Å. Cocrystallization of FosB(Sa) with either l-Cys or BSH results in a disulfide bond between the exogenous thiol and the active site Cys9 of the enzyme. An analysis of the structures suggests that a highly conserved loop region of the FosB enzymes must change conformation to bind fosfomycin. While two crystals of FosB(Sa) contain Zn(2+) in the active site, kinetic analyses of FosB(Sa) indicated that the enzyme is inhibited by Zn(2+) for l-Cys transferase activity and only marginally active for BSH transferase activity. Fosfomycin-treated disk diffusion assays involving S. aureus Newman and the USA300 JE2 methicillin-resistant S. aureus demonstrate a marked increase in the sensitivity of the organism to the antibiotic in either the BSH or FosB null strains, indicating that both are required for survival of the organism in the presence of the antibiotic. This work identifies FosB as a primary fosfomycin-modifying pathway of S. aureus and establishes the enzyme as a potential therapeutic target for increased efficacy of fosfomycin against the pathogen.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Farmacorresistência Bacteriana , Fosfomicina/farmacologia , Genoma Bacteriano , Staphylococcus aureus/enzimologia , Transferases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cátions Bivalentes , Cristalografia por Raios X , Cisteína/análogos & derivados , Cisteína/química , Glucosamina/análogos & derivados , Glucosamina/química , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Sulfatos/química , Transferases/genética , Zinco/química
19.
Tetrahedron Lett ; 55(1)2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24396154

RESUMO

A novel and highly efficient synthetic method leveraging microwave-assisted organic synthesis (MAOS) to yield di-7-azaindolylmethanes (DAIMs) is reported. Under MAOS conditions, reaction of 7-azaindole with aldehydes resulted predominantly in DAIMs, as opposed to the expected 7-azaindole addition products that form at ambient temperature. Based upon studies of different indoles and azaindoles with various aromatic and aliphatic aldehydes, we herein propose a mechanism where rapid and efficient microwave heating promotes nucleophilicity of 7-azaindoles towards the corresponding alkylidene-azaindolene intermediate to form the DAIM. This sequence provides a versatile approach to efficiently synthesize novel DAIMs that may be useful pharmaceuticals.

20.
Curr Protoc ; 4(6): e1088, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923271

RESUMO

The middle (MID) domain of eukaryotic Argonaute (Ago) proteins and archaeal and bacterial homologues mediates the interaction with the 5'-terminal nucleotide of miRNA and siRNA guide strands. The MID domain of human Ago2 (hAgo2) is comprised of 139 amino acids with a molecular weight of 15.56 kDa. MID adopts a Rossman-like beta1-alpha1-beta2-alpha2-beta3-alpha3-beta4-alpha4 fold with a nucleotide specificity loop between beta3 and alpha3. Multiple crystal structures of nucleotides bound to hAgo2 MID have been reported, whereby complexes were obtained by soaking ligands into crystals of MID domain alone. This protocol describes a simplified one-step approach to grow well-diffracting crystals of hAgo2 MID-nucleotide complexes by mixing purified His6-SUMO-MID fusion protein, Ulp1 protease, and excess nucleotide in the presence of buffer and precipitant. The crystal structures of MID complexes with UMP, UTP and 2'-3' linked α-L-threofuranosyl thymidine-3'-triphosphate (tTTP) are presented. This article also describes fluorescence-based assays to measure dissociation constants (Kd) of MID-nucleotide interactions for nucleoside 5'-monophosphates and nucleoside 3',5'-bisphosphates. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Crystallization of Ago2 MID-nucleotide complexes Basic Protocol 2: Measurement of dissociation constant Kd between Ago2 MID and nucleotides.


Assuntos
Proteínas Argonautas , Humanos , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Cristalografia por Raios X , Nucleotídeos/metabolismo , Nucleotídeos/química , Ligação Proteica , Histidina/química , Histidina/metabolismo , Cristalização , Domínios Proteicos , Oligopeptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA