Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circ Res ; 123(11): 1220-1231, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30571461

RESUMO

RATIONALE: Possible beneficial effects of GDF11 (growth differentiation factor 11) on the normal, diseased, and aging heart have been reported, including reversing aging-induced hypertrophy. These effects have not been well validated. High levels of GDF11 have also been shown to cause cardiac and skeletal muscle wasting. These controversies could be resolved if dose-dependent effects of GDF11 were defined in normal and aged animals as well as in pressure overload-induced pathological hypertrophy. OBJECTIVE: To determine dose-dependent effects of GDF11 on normal hearts and those with pressure overload-induced cardiac hypertrophy. METHODS AND RESULTS: Twelve- to 13-week-old C57BL/6 mice underwent transverse aortic constriction (TAC) surgery. One-week post-TAC, these mice received rGDF11 (recombinant GDF11) at 1 of 3 doses: 0.5, 1.0, or 5.0 mg/kg for up to 14 days. Treatment with GDF11 increased plasma concentrations of GDF11 and p-SMAD2 in the heart. There were no significant differences in the peak pressure gradients across the aortic constriction between treatment groups at 1 week post-TAC. Two weeks of GDF11 treatment caused dose-dependent decreases in cardiac hypertrophy as measured by heart weight/tibia length ratio, myocyte cross-sectional area, and left ventricular mass. GDF11 improved cardiac pump function while preventing TAC-induced ventricular dilation and caused a dose-dependent decrease in interstitial fibrosis (in vivo), despite increasing markers of fibroblast activation and myofibroblast transdifferentiation (in vitro). Treatment with the highest dose (5.0 mg/kg) of GDF11 caused severe body weight loss, with significant decreases in both muscle and organ weights and death in both sham and TAC mice. CONCLUSIONS: Although GDF11 treatment can reduce pathological cardiac hypertrophy and associated fibrosis while improving cardiac pump function in pressure overload, high doses of GDF11 cause severe cachexia and death. Use of GDF11 as a therapy could have potentially devastating actions on the heart and other tissues.


Assuntos
Caquexia/etiologia , Cardiomegalia/tratamento farmacológico , Fatores de Diferenciação de Crescimento/uso terapêutico , Animais , Fatores de Diferenciação de Crescimento/administração & dosagem , Fatores de Diferenciação de Crescimento/efeitos adversos , Fatores de Diferenciação de Crescimento/farmacologia , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
2.
Circ Res ; 118(7): 1143-50; discussion 1150, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27034276

RESUMO

This "Controversies in Cardiovascular Research" article evaluates the evidence for and against the hypothesis that the circulating blood level of growth differentiation factor 11 (GDF11) decreases in old age and that restoring normal GDF11 levels in old animals rejuvenates their skeletal muscle and reverses pathological cardiac hypertrophy and cardiac dysfunction. Studies supporting the original GDF11 hypothesis in skeletal and cardiac muscle have not been validated by several independent groups. These new studies have either found no effects of restoring normal GDF11 levels on cardiac structure and function or have shown that increasing GDF11 or its closely related family member growth differentiation factor 8 actually impairs skeletal muscle repair in old animals. One possible explanation for what seems to be mutually exclusive findings is that the original reagent used to measure GDF11 levels also detected many other molecules so that age-dependent changes in GDF11 are still not well known. The more important issue is whether increasing blood [GDF11] repairs old skeletal muscle and reverses age-related cardiac pathologies. There are substantial new and existing data showing that GDF8/11 can exacerbate rather than rejuvenate skeletal muscle injury in old animals. There is also new evidence disputing the idea that there is pathological hypertrophy in old C57bl6 mice and that GDF11 therapy can reverse cardiac pathologies. Finally, high [GDF11] causes reductions in body and heart weight in both young and old animals, suggestive of a cachexia effect. Our conclusion is that elevating blood levels of GDF11 in the aged might cause more harm than good.


Assuntos
Envelhecimento/patologia , Proteínas Morfogenéticas Ósseas/uso terapêutico , Fatores de Diferenciação de Crescimento/uso terapêutico , Doenças Musculares/tratamento farmacológico , Envelhecimento/sangue , Animais , Proteínas Morfogenéticas Ósseas/sangue , Proteínas Morfogenéticas Ósseas/deficiência , Proteínas Morfogenéticas Ósseas/farmacologia , Proteínas Morfogenéticas Ósseas/toxicidade , Caquexia/induzido quimicamente , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fatores de Diferenciação de Crescimento/sangue , Fatores de Diferenciação de Crescimento/deficiência , Fatores de Diferenciação de Crescimento/farmacologia , Fatores de Diferenciação de Crescimento/toxicidade , Coração/efeitos dos fármacos , Humanos , Hipertrofia , Camundongos Endogâmicos C57BL , Modelos Animais , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Músculos/patologia , Doenças Musculares/fisiopatologia , Miocárdio/patologia , Miostatina/fisiologia , Miostatina/uso terapêutico , Miostatina/toxicidade , Parabiose , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/toxicidade , Regeneração/efeitos dos fármacos , Reprodutibilidade dos Testes , Transdução de Sinais , Método Simples-Cego , Proteína Smad2/fisiologia , Proteína Smad3/fisiologia
3.
Circ Res ; 119(7): 865-79, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27461939

RESUMO

RATIONALE: Catecholamines increase cardiac contractility, but exposure to high concentrations or prolonged exposures can cause cardiac injury. A recent study demonstrated that a single subcutaneous injection of isoproterenol (ISO; 200 mg/kg) in mice causes acute myocyte death (8%-10%) with complete cardiac repair within a month. Cardiac regeneration was via endogenous cKit(+) cardiac stem cell-mediated new myocyte formation. OBJECTIVE: Our goal was to validate this simple injury/regeneration system and use it to study the biology of newly forming adult cardiac myocytes. METHODS AND RESULTS: C57BL/6 mice (n=173) were treated with single injections of vehicle, 200 or 300 mg/kg ISO, or 2 daily doses of 200 mg/kg ISO for 6 days. Echocardiography revealed transiently increased systolic function and unaltered diastolic function 1 day after single ISO injection. Single ISO injections also caused membrane injury in ≈10% of myocytes, but few of these myocytes appeared to be necrotic. Circulating troponin I levels after ISO were elevated, further documenting myocyte damage. However, myocyte apoptosis was not increased after ISO injury. Heart weight to body weight ratio and fibrosis were also not altered 28 days after ISO injection. Single- or multiple-dose ISO injury was not associated with an increase in the percentage of 5-ethynyl-2'-deoxyuridine-labeled myocytes. Furthermore, ISO injections did not increase new myocytes in cKit(+/Cre)×R-GFP transgenic mice. CONCLUSIONS: A single dose of ISO causes injury in ≈10% of the cardiomyocytes. However, most of these myocytes seem to recover and do not elicit cKit(+) cardiac stem cell-derived myocyte regeneration.


Assuntos
Isoproterenol/administração & dosagem , Isoproterenol/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Regeneração/efeitos dos fármacos , Animais , Catecolaminas/administração & dosagem , Catecolaminas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/fisiologia , Regeneração/fisiologia
4.
Am J Physiol Heart Circ Physiol ; 313(3): H620-H630, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28646025

RESUMO

Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na+ and Ca2+ in the development of HCM, but the role of repolarizing K+ currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K+ currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K+ currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K+ channel subunits. In conclusion, decrease in repolarizing K+ currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility.NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K+ currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy.


Assuntos
Proteínas de Transporte/metabolismo , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Taquicardia Ventricular/metabolismo , Complexos Ventriculares Prematuros/metabolismo , Potenciais de Ação , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proteínas de Transporte/genética , Modelos Animais de Doenças , Eletrocardiografia Ambulatorial , Fibrose , Predisposição Genética para Doença , Cinética , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp , Fenótipo , Canais de Potássio/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Telemetria , Complexos Ventriculares Prematuros/genética , Complexos Ventriculares Prematuros/patologia , Complexos Ventriculares Prematuros/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA