RESUMO
BACKGROUND: Alternative splicing (AS) plays a crucial role in transcriptomic diversity and is a hallmark of cancer that profoundly influences the development and progression of prostate cancer (PCa), a prevalent and potentially life-limiting cancer among men. Accumulating evidence has highlighted the association between AS dysregulation and the onset and progression of PCa. However, a comprehensive and integrative analysis of AS profiles at the event level, utilising data from multiple high-throughput cohorts and evaluating the prognosis of PCa progression, remains lacking and calls for thorough exploration. RESULTS: We identified a differentially expressed retained intron event in ZWINT across three distinct cohorts, encompassing an original array-based dataset profiled by us previously and two RNA sequencing (RNA-seq) datasets. Subsequent in-depth analyses of these RNA-seq datasets revealed 141 altered events, of which 21 demonstrated a significant association with patients' biochemical recurrence-free survival (BCRFS). We formulated an AS event-based prognostic signature, capturing six pivotal events in genes CYP4F12, NFATC4, PIGO, CYP3A5, ALS2CL, and FXYD3. This signature effectively differentiated high-risk patients diagnosed with PCa, who experienced shorter BCRFS, from their low-risk counterparts. Notably, the signature's predictive power surpassed traditional clinicopathological markers in forecasting 5-year BCRFS, demonstrating robust performance in both internal and external validation sets. Lastly, we constructed a novel nomogram that integrates patients' Gleason scores with pathological tumour stages, demonstrating improved prognostication of BCRFS. CONCLUSIONS: Prediction of clinical progression remains elusive in PCa. This research uncovers novel splicing events associated with BCRFS, augmenting existing prognostic tools, thus potentially refining clinical decision-making.
Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Prognóstico , Transcriptoma/genética , Processamento Alternativo/genética , Biomarcadores Tumorais/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Proteínas de Membrana/genética , Proteínas de Neoplasias/genéticaRESUMO
The likelihood that potential new drugs will successfully navigate the current translational pipeline is poor, with fewer than 10% of drug candidates making this transition successfully, even after their entry into clinical trials. Prior to this stage, candidate drugs are typically evaluated by using models of increasing complexity, beginning with basic in vitro cell culture studies and progressing through to animal studies, where many of these candidates are lost due to lack of efficacy or toxicology concerns. There are many reasons for this poor translation, but interspecies differences in functional and physiological parameters undoubtedly contribute to the problem. Improving the human-relevance of early preclinical in vitro models may help translatability, especially when targeting more nuanced species-specific cell processes. The aim of the current study was to define a set of guidelines for the effective transition of human primary cells of multiple lineages to more physiologically relevant, translatable, animal-free in vitro culture conditions. Animal-derived biomaterials (ADBs) were systematically replaced with non-animal-derived alternatives in the in vitro cell culture systems, and the impact of the substitutions subsequently assessed by comparing the kinetics and phenotypes of the cultured cells. ADBs were successfully eliminated from primary human dermal fibroblast, uterine fibroblast, pulmonary fibroblast, retinal endothelial cell and peripheral blood mononuclear cell culture systems, and the individual requirements of each cell subtype were defined to ensure the successful transition toward growth under animal-free culture conditions. We demonstrate that it is possible to transition ('humanise') a diverse set of human primary cell types by following a set of simple overarching principles that inform the selection, and guide the evaluation of new, improved, human-relevant in vitro culture conditions.
Assuntos
Materiais Biocompatíveis , Humanos , Animais , Cultura Primária de Células/métodos , Alternativas aos Testes com Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacosRESUMO
OBJECTIVE: Antitumour necrosis factor (TNF) drugs impair serological responses following SARS-CoV-2 vaccination. We sought to assess if a third dose of a messenger RNA (mRNA)-based vaccine substantially boosted anti-SARS-CoV-2 antibody responses and protective immunity in infliximab-treated patients with IBD. DESIGN: Third dose vaccine induced anti-SARS-CoV-2 spike (anti-S) receptor-binding domain (RBD) antibody responses, breakthrough SARS-CoV-2 infection, reinfection and persistent oropharyngeal carriage in patients with IBD treated with infliximab were compared with a reference cohort treated with vedolizumab from the impaCt of bioLogic therApy on saRs-cov-2 Infection and immuniTY (CLARITY) IBD study. RESULTS: Geometric mean (SD) anti-S RBD antibody concentrations increased in both groups following a third dose of an mRNA-based vaccine. However, concentrations were lower in patients treated with infliximab than vedolizumab, irrespective of whether their first two primary vaccine doses were ChAdOx1 nCoV-19 (1856 U/mL (5.2) vs 10 728 U/mL (3.1), p<0.0001) or BNT162b2 vaccines (2164 U/mL (4.1) vs 15 116 U/mL (3.4), p<0.0001). However, no differences in anti-S RBD antibody concentrations were seen following third and fourth doses of an mRNA-based vaccine, irrespective of the combination of primary vaccinations received. Post-third dose, anti-S RBD antibody half-life estimates were shorter in infliximab-treated than vedolizumab-treated patients (37.0 days (95% CI 35.6 to 38.6) vs 52.0 days (95% CI 49.0 to 55.4), p<0.0001).Compared with vedolizumab-treated, infliximab-treated patients were more likely to experience SARS-CoV-2 breakthrough infection (HR 2.23 (95% CI 1.46 to 3.38), p=0.00018) and reinfection (HR 2.10 (95% CI 1.31 to 3.35), p=0.0019), but this effect was uncoupled from third vaccine dose anti-S RBD antibody concentrations. Reinfection occurred predominantly during the Omicron wave and was predicted by SARS-CoV-2 antinucleocapsid concentrations after the initial infection. We did not observe persistent oropharyngeal carriage of SARS-CoV-2. Hospitalisations and deaths were uncommon in both groups. CONCLUSIONS: Following a third dose of an mRNA-based vaccine, infliximab was associated with attenuated serological responses and more SARS-CoV-2 breakthrough infection and reinfection which were not predicted by the magnitude of anti-S RBD responses, indicative of vaccine escape by the Omicron variant. TRIAL REGISTRATION NUMBER: ISRCTN45176516.
Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Vacinas , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Infliximab/uso terapêutico , Pandemias , Reinfecção/epidemiologia , Reinfecção/prevenção & controle , Vacina BNT162 , ChAdOx1 nCoV-19 , Anticorpos Antivirais , Doenças Inflamatórias Intestinais/tratamento farmacológicoRESUMO
Changes to islet cell identity in response to type 2 diabetes (T2D) have been reported in rodent models, but are less well characterized in humans. We assessed the effects of aspects of the diabetic microenvironment on hormone staining, total gene expression, splicing regulation and the alternative splicing patterns of key genes in EndoC-ßH1 human beta cells. Genes encoding islet hormones [somatostatin (SST), insulin (INS), Glucagon (GCG)], differentiation markers [Forkhead box O1 (FOXO1), Paired box 6, SRY box 9, NK6 Homeobox 1, NK6 Homeobox 2] and cell stress markers (DNA damage inducible transcript 3, FOXO1) were dysregulated in stressed EndoC-ßH1 cells, as were some serine arginine rich splicing factor splicing activator and heterogeneous ribonucleoprotein particle inhibitor genes. Whole transcriptome analysis of primary T2D islets and matched controls demonstrated dysregulated splicing for ~25% of splicing events, of which genes themselves involved in messenger ribonucleic acid processing and regulation of gene expression comprised the largest group. Approximately 5% of EndoC-ßH1 cells exposed to these factors gained SST positivity in vitro. An increased area of SST staining was also observed ex vivo in pancreas sections recovered at autopsy from donors with type 1 diabetes (T1D) or T2D (9.3% for T1D and 3% for T2D, respectively compared with 1% in controls). Removal of the stressful stimulus or treatment with the AKT Serine/Threonine kinase inhibitor SH-6 restored splicing factor expression and reversed both hormone staining effects and patterns of gene expression. This suggests that reversible changes in hormone expression may occur during exposure to diabetomimetic cellular stressors, which may be mediated by changes in splicing regulation.
Assuntos
Processamento Alternativo , Ilhotas Pancreáticas/metabolismo , Estresse Fisiológico/genética , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Expressão Gênica , Perfilação da Expressão Gênica , Glucagon/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Neuroendócrinas/metabolismo , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Cellular plasticity is a key facet of cellular homeostasis requiring correct temporal and spatial patterns of alternative splicing. Splicing factors, which orchestrate this process, demonstrate age-related dysregulation of expression; they are emerging as potential influences on aging and longevity. The upstream drivers of these alterations are still unclear but may involve aberrant cellular signaling. We compared the phosphorylation status of proteins in multiple signaling pathways in early and late passage human primary fibroblasts. We then assessed the impact of chemical inhibition or targeted knockdown of direct downstream targets of the ERK and AKT pathways on splicing factor expression, cellular senescence, and proliferation kinetics in senescent primary human fibroblasts. Components of the ERK and AKT signaling pathways demonstrated altered activation during cellular aging. Inhibition of AKT and ERK pathways led to up-regulation of splicing factor expression, reduction in senescent cell load, and partial reversal of multiple cellular senescence phenotypes in a dose-dependent manner. Furthermore, targeted knockdown of the genes encoding the downstream targets FOXO1 or ETV6 was sufficient to mimic these observations. Our results suggest that age-associated dysregulation of splicing factor expression and cellular senescence may derive in part from altered activity of ERK and AKT signaling and may act in part through the ETV6 and FOXO1 transcription factors. Targeting the activity of downstream effectors of ERK and AKT may therefore represent promising targets for future therapeutic intervention.-Latorre, E., Ostler, E. L., Faragher, R. G. A., Harries, L. W. FOXO1 and ETV6 genes may represent novel regulators of splicing factor expression in cellular senescence.
Assuntos
Senescência Celular , Proteína Forkhead Box O1/genética , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/genética , Proliferação de Células , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/enzimologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais , Variante 6 da Proteína do Fator de Translocação ETSRESUMO
Altered expression of miRNAs is evident in the islets of diabetic human donors, but the effects of specific aspects of the diabetic microenvironment and identity of gene ontology pathways demonstrating target gene enrichment in response to each is understudied. We assessed changes in the miRNA milieu in response to high/low glucose, hypoxia, dyslipidaemia and inflammatory factors in a humanised EndoC-ßH1 beta cell culture system and performed miRPath analysis for each treatment individually. The 10 miRNAs demonstrating the greatest dysregulation across treatments were then independently validated and Gene Set Enrichment Analysis to confirm targeted pathways undertaken. 171 of 392 miRNAs displayed altered expression in response to one or more cellular stressors. miRNA changes were treatment specific, but their target genes were enriched in conserved pathways. 5 miRNAs (miR-136-5p, miR299-5p, miR-454-5p, miR-152 and miR-185) were dysregulated in response to multiple stressors and survived validation in independent samples (pâ¯=â¯0.008, 0.002, 0.012, 0.005 and 0.024 respectively). Target genes of dysregulated miRNAs were clustered into FOXO1, HIPPO and Lysine degradation pathways (pâ¯=â¯0.02, pâ¯=â¯5.84â¯×â¯10-5 and pâ¯=â¯3.00â¯×â¯10-3 respectively). We provide evidence that the diabetic microenvironment may induce changes to the expression of miRNAs targeting genes enriched in pathways involved in cell stress response and cell survival.
Assuntos
Microambiente Celular/genética , Diabetes Mellitus/metabolismo , Proteína Forkhead Box O1/metabolismo , Células Secretoras de Insulina/metabolismo , Lisina/metabolismo , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular , Sobrevivência Celular/fisiologia , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Redes Reguladoras de Genes/fisiologia , Via de Sinalização Hippo , HumanosRESUMO
BACKGROUND: Obesity increases breast cancer (BC) risk in post-menopausal women by mostly unknown molecular mechanisms which may partly be regulated by microRNAs (miRNAs). METHODS: We isolated RNA from paired benign and malignant biopsies from 83 BC patients and determined miRNA profiles in samples from 12 women at the extremes of the BMI distribution by RNA-seq. Candidates were validated in all samples. Associations between miR-10b expression and validated target transcript levels, and effects of targeted manipulation of miR-10b levels in a primary BC cell line on proliferation and invasion potential, were explored. RESULTS: Of the 148 miRNAs robustly expressed in breast tissues, the levels of miR-21, miR-10b, miR-451a, miR-30c, and miR-378d were significantly associated with presence of cancer. Of these, miR-10b showed a stronger down-regulation in the tumors of the obese subjects, as opposed to the lean. In ductal but not lobular tumors, significant inverse correlations were observed between the tumor levels of miR-10b and miR-30c and the mRNA levels of cancer-relevant target genes SRSF1, PIEZO1, MAPRE1, CDKN2A, TP-53 and TRA2B, as well as tumor grade. Suppression of miR-10b levels in BT-549 primary BC-derived cells increased cell proliferation and invasive capacity, while exogenous miR-10b mimic decreased invasion. Manipulation of miR-10b levels also inversely affected the mRNA levels of miR-10b targets BCL2L11, PIEZO1 and NCOR2. CONCLUSIONS: Our findings suggest that miR-10b may be a mediator between obesity and cancer in post-menopausal women, regulating several known cancer-relevant genes. MiR-10b expression may have diagnostic and therapeutic implications for the incidence and prognosis of BC in obese women.
Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Obesidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Prognóstico , Células Tumorais CultivadasRESUMO
Dysregulation of splicing factor expression is emerging as a driver of human ageing; levels of transcripts encoding splicing regulators have previously been implicated in ageing and cellular senescence both in vitro and in vivo. We measured the expression levels of an a priori panel of 20 age- or senescence-associated splicing factors by qRT-PCR in peripheral blood samples from the InCHIANTI Study of Aging, and assessed longitudinal relationships with human ageing phenotypes (cognitive decline and physical ability) using multivariate linear regression. AKAP17A, HNRNPA0 and HNRNPM transcript levels were all predictively associated with severe decline in MMSE score (p = 0.007, 0.001 and 0.008 respectively). Further analyses also found expression of these genes was associated with a performance decline in two other cognitive measures; the Trail Making Test and the Purdue Pegboard Test. AKAP17A was nominally associated with a decline in mean hand-grip strength (p = 0.023), and further analyses found nominal associations with two other physical ability measures; the Epidemiologic Studies of the Elderly-Short Physical Performance Battery and calculated speed (m/s) during a timed 400 m fast walking test. These data add weight to the hypothesis that splicing dyregulation may contribute to the development of some ageing phenotypes in the human population.
Assuntos
Envelhecimento/fisiologia , Antígenos/genética , Disfunção Cognitiva , Força da Mão/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Glicoproteínas de Membrana/genética , Fatores de Processamento de RNA , Velocidade de Caminhada/genética , Idoso , Senescência Celular/fisiologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Correlação de Dados , Feminino , Humanos , Masculino , Testes de Estado Mental e Demência , Desempenho Físico Funcional , Valor Preditivo dos Testes , Fatores de Processamento de RNA/sangue , Fatores de Processamento de RNA/genéticaRESUMO
Coronary heart disease (CHD) is a leading cause of morbidity in people over 65 years of age; >40% of all deaths are due to this condition. The association between increasing age and CHD is well documented; the accumulation of senescent cells in cardiac and vascular tissues may represent one factor underpinning this observation. We aimed to identify senescence-related expression changes in primary human senescent cardiomyocytes and endothelial cells and to relate transcript expression in peripheral blood leucocytes to prevalent and incident CHD in the InCHIANTI study of aging. We quantified splicing factor expression and splicing patterns of candidate transcripts in proliferative and senescent later passage endothelial cells and cardiomyocytes using qRTPCR. Senescence-associated isoforms also expressed in peripheral blood leucocytes were then examined for associations with CHD status in 134 pairs of age, sex and BMI-matched CHD cases and controls. Splicing factor expression was dysregulated in senescent cardiomyocytes, as previously reported for endothelial cells, as was the expression of alternatively expressed cardiac and vascular candidate genes in both cell types. We found nominal associations between the expression of VEGFA156b and FNI-EIIIIA isoforms in peripheral blood mRNA and CHD status. Dysregulated splicing factor expression is a key feature of senescent cardiomyocytes and endothelial cells. Altered splicing of key cardiac or endothelial genes may contribute to the risk of CHD in the human population.
Assuntos
Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Células Endoteliais/citologia , Fator A de Crescimento do Endotélio Vascular/genética , Processamento Alternativo/genética , Células Cultivadas , Senescência Celular/genética , Endotélio Vascular , Humanos , Incidência , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genéticaRESUMO
4E-Transporter binds eIF4E via its consensus sequence YXXXXLΦ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs. Here, we address further the mechanism of translational repression by 4E-T by first identifying and delineating the interacting sites of its major partners by mass spectrometry and western blotting, including DDX6, UNR, unrip, PAT1B, LSM14A and CNOT4. Furthermore, we document novel binding between 4E-T partners including UNR-CNOT4 and unrip-LSM14A, altogether suggesting 4E-T nucleates a complex network of RNA-binding protein interactions. In functional assays, we demonstrate that joint deletion of two short conserved motifs that bind UNR and DDX6 relieves repression of 4E-T-bound mRNA, in part reliant on the 4E-T-DDX6-CNOT1 axis. We also show that the DDX6-4E-T interaction mediates miRNA-dependent translational repression and de novo P-body assembly, implying that translational repression and formation of new P-bodies are coupled processes. Altogether these findings considerably extend our understanding of the role of 4E-T in gene regulation, important in development and neurogenesis.
Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos/genética , Sítios de Ligação , RNA Helicases DEAD-box/genética , Proteínas de Ligação a DNA/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Regulação da Expressão Gênica/genética , Células HEK293 , Células HeLa , Humanos , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica , Mapas de Interação de Proteínas/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Altered expression of mRNA splicing factors occurs with ageing in vivo and is thought to be an ageing mechanism. The accumulation of senescent cells also occurs in vivo with advancing age and causes much degenerative age-related pathology. However, the relationship between these two processes is opaque. Accordingly we developed a novel panel of small molecules based on resveratrol, previously suggested to alter mRNA splicing, to determine whether altered splicing factor expression had potential to influence features of replicative senescence. RESULTS: Treatment with resveralogues was associated with altered splicing factor expression and rescue of multiple features of senescence. This rescue was independent of cell cycle traverse and also independent of SIRT1, SASP modulation or senolysis. Under growth permissive conditions, cells demonstrating restored splicing factor expression also demonstrated increased telomere length, re-entered cell cycle and resumed proliferation. These phenomena were also influenced by ERK antagonists and agonists. CONCLUSIONS: This is the first demonstration that moderation of splicing factor levels is associated with reversal of cellular senescence in human primary fibroblasts. Small molecule modulators of such targets may therefore represent promising novel anti-degenerative therapies.
Assuntos
Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Fatores de Processamento de RNA/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Estilbenos/farmacologia , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos , Humanos , Fatores de Processamento de RNA/metabolismo , Resveratrol , Estilbenos/químicaRESUMO
AIMS/HYPOTHESIS: Ageing can lead to reduced insulin sensitivity and loss of pancreatic beta cell function, predisposing individuals to the development of diabetes. The aim of this study was to assess the contribution of microRNAs (miRNAs) to age-associated beta cell dysfunction. METHODS: The global mRNA and miRNA profiles of 3- and 12-month-old rat islets were collected by microarray. The functional impact of age-associated differences in miRNA expression was investigated by mimicking the observed changes in primary beta cells from young animals. RESULTS: Beta cells from 12-month-old rats retained normal insulin content and secretion, but failed to proliferate in response to mitotic stimuli. The islets of these animals displayed modifications at the level of several miRNAs, including upregulation of miR-34a, miR-124a and miR-383, and downregulation of miR-130b and miR-181a. Computational analysis of the transcriptomic modifications observed in the islets of 12-month-old rats revealed that the differentially expressed genes were enriched for miR-34a and miR-181a targets. Indeed, the induction of miR-34a and reduction of miR-181a in the islets of young animals mimicked the impaired beta cell proliferation observed in old animals. mRNA coding for alpha-type platelet-derived growth factor receptor, which is critical for compensatory beta cell mass expansion, is directly inhibited by miR34a and is likely to be at least partly responsible for the effects of this miRNA. CONCLUSIONS/INTERPRETATION: Changes in the level of specific miRNAs that occur during ageing affect the proliferative capacity of beta cells. This might reduce their ability to expand under conditions of increased insulin demand, favouring the development of type 2 diabetes.
Assuntos
Envelhecimento , Regulação da Expressão Gênica , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , MicroRNAs/metabolismo , Animais , Apoptose , Proliferação de Células , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Humanos , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transcriptoma , TransfecçãoRESUMO
Type 2 diabetes (T2D) affects 415 million people worldwide and is characterized by chronic hyperglycaemia and insulin resistance, progressing to insufficient insulin production, as a result of ß-cell failure. Over time, chronic hyperglycaemia can ultimately lead to loss of ß-cell function, leaving patients insulin-dependent. Until recently the loss of ß-cell mass seen in T2D was considered to be the result of increased rates of apoptosis; however, it has been proposed that apoptosis alone cannot account for the extent of ß-cell mass loss seen in the disease, and that a loss of function may also occur as a result of changes in ß-cell differentiation status. In the present review, we consider current knowledge of determinants of ß-cell fate in the context of understanding its relevance to disease process in T2D, and also the impact of a diabetogenic environment (hyperglycaemia, hypoxia, inflammation and dyslipidaemia) on the expression of genes involved in maintenance of ß-cell identity. We describe current knowledge of the impact of the diabetic microenvironment on gene regulatory processes such alternative splicing, the expression of disallowed genes and epigenetic modifications. Elucidating the molecular mechanisms that underpin changes to ß-cell differentiation status and the concomitant ß-cell failure offers potential treatment targets for the future management of patients with T2D.
Assuntos
Desdiferenciação Celular , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Hiperglicemia/metabolismo , Células Secretoras de Insulina/citologia , Animais , Apoptose , Diferenciação Celular , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Humanos , Hipóxia/metabolismo , Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
AIMS/HYPOTHESIS: Intronic single nucleotide polymorphisms (SNPs) in the CDKAL1 gene are associated with risk of developing type 2 diabetes. A strong correlation between risk alleles and lower levels of the non-coding RNA, CDKAL1-v1, has recently been reported in whole blood extracted from Japanese individuals. We sought to replicate this association in two independent cohorts: one using whole blood from white UK-resident individuals, and one using a collection of human pancreatic islets, a more relevant tissue type to study with respect to the aetiology of diabetes. METHODS: Levels of CDKAL1-v1 were measured by real-time PCR using RNA extracted from human whole blood (n = 70) and human pancreatic islets (n = 48). Expression with respect to genotype was then determined. RESULTS: In a simple linear regression model, expression of CDKAL1-v1 was associated with the lead type 2 diabetes-associated SNP, rs7756992, in whole blood and islets. However, these associations were abolished or substantially reduced in multiple regression models taking into account rs9366357 genotype: a moderately linked SNP explaining a much larger amount of the variation in CDKAL1-v1 levels, but not strongly associated with risk of type 2 diabetes. CONCLUSIONS/INTERPRETATION: Contrary to previous findings, we provide evidence against a role for dysregulated expression of CDKAL1-v1 in mediating the association between intronic SNPs in CDKAL1 and susceptibility to type 2 diabetes. The results of this study illustrate how caution should be exercised when inferring causality from an association between disease-risk genotype and non-coding RNA expression.
Assuntos
Quinase 5 Dependente de Ciclina/genética , Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , RNA não Traduzido/genética , Estudos de Casos e Controles , Quinase 5 Dependente de Ciclina/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/etnologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Íntrons , Ilhotas Pancreáticas/química , Modelos Lineares , Fenótipo , RNA não Traduzido/sangue , Fatores de Risco , Reino Unido/epidemiologia , População Branca/genética , tRNA MetiltransferasesRESUMO
MicroRNAs are non-coding RNAs with roles in many cellular processes. Tissue-specific miRNA profiles associated with senescence have been described for several cell and tissue types. We aimed to characterise miRNAs involved in core, rather than tissue-specific, senescence pathways by assessment of common miRNA expression differences in two different cell types, with follow-up of predicted targets in human peripheral blood. MicroRNAs were profiled in early and late passage primary lung and skin fibroblasts to identify commonly-deregulated miRNAs. Expression changes of their bioinformatically-predicted mRNA targets were then assessed in both cell types and in human peripheral blood from elderly participants in the InCHIANTI study. 57/178 and 26/492 microRNAs were altered in late passage skin and lung cells respectively. Three miRNAs (miR-92a, miR-15b and miR-125a-3p) were altered in both tissues. 14 mRNA targets of the common miRNAs were expressed in lung and skin fibroblasts, of which two demonstrated up-regulation in late passage skin and lung cells (LYST; p = 0.02 [skin] and 0.02 [lung] INMT; p = 0.03 [skin] and 0.04 [lung]). ZMPSTE24 and LHFPL2 demonstrated altered expression in late passage skin cells only (p = 0.01 and 0.05 respectively). LHFPL2 was also positively correlated with age in peripheral blood (p value = 6.6 × 10(-5)). We find that the majority of senescence-associated miRNAs demonstrate tissue-specific effects. However, miRNAs showing common effects across tissue types may represent those associated with core, rather than tissue-specific senescence processes.
Assuntos
Envelhecimento/metabolismo , Senescência Celular , Fibroblastos/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo , Pele/metabolismo , Fatores Etários , Envelhecimento/sangue , Envelhecimento/genética , Linhagem Celular , Proliferação de Células , Senescência Celular/genética , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Pulmão/citologia , MicroRNAs/genética , Pele/citologia , Fatores de TempoRESUMO
miRNAs are small non-coding regulators of gene expression that are estimated to regulate over 60% of all human genes. Each miRNA can target multiple mRNA targets and as such, miRNAs are responsible for some of the 'fine tuning' of gene expression and are implicated in regulation of all cellular processes. miRNAs bind to target genes by sequence complementarity, resulting in target degradation or translational blocking and usually a reduction in target gene expression. Like mRNA, miRNAs are transcribed from genomic DNA and are processed in several steps that are heavily reliant on correct secondary and tertiary structure. Secondary structure is determined by RNA sequence, which is in turn determined by the sequence of the genome. The human genome, however, like most eukaryotes is variable. Large numbers of SNPs (single nucleotide polymorphisms), small insertions and deletions (indels) and CNVs (copy number variants) have been described in our genome. Should this genetic variation occur in regions critical for the correct secondary structure or target binding, it may interfere with normal gene regulation and cause disease. In this review, we outline the consequences of genetic variation involving different aspects of miRNA biosynthesis, processing and regulation, with selected examples of incidences when this has potential to affect human disease.
Assuntos
MicroRNAs/genética , Variação Genética/genética , Genoma Humano/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genéticaRESUMO
Progeroid syndromes such as Hutchinson Gilford Progeroid syndrome (HGPS), Werner syndrome (WS) and Cockayne syndrome (CS), result in severely reduced lifespans and premature ageing. Normal senescent cells show splicing factor dysregulation, which has not yet been investigated in syndromic senescent cells. We sought to investigate the senescence characteristics and splicing factor expression profiles of progeroid dermal fibroblasts. Natural cellular senescence can be reversed by application of the senomorphic drug, trametinib, so we also investigated its ability to reverse senescence characteristics in syndromic cells. We found that progeroid cultures had a higher senescence burden, but did not always have differences in levels of proliferation, DNA damage repair and apoptosis. Splicing factor gene expression appeared dysregulated across the three syndromes. 10 µM trametinib reduced senescent cell load and affected other aspects of the senescence phenotype (including splicing factor expression) in HGPS and Cockayne syndromes. Werner syndrome cells did not demonstrate changes in in senescence following treatment. Splicing factor dysregulation in progeroid cells provides further evidence to support this mechanism as a hallmark of cellular ageing and highlights the use of progeroid syndrome cells in the research of ageing and age-related disease. This study suggests that senomorphic drugs such as trametinib could be a useful adjunct to therapy for progeroid diseases.
Assuntos
Síndrome de Cockayne , Progéria , Piridonas , Pirimidinonas , Síndrome de Werner , Humanos , Síndrome de Werner/tratamento farmacológico , Síndrome de Werner/genética , Síndrome de Cockayne/tratamento farmacológico , Síndrome de Cockayne/genética , Processamento Alternativo/genética , Senoterapia , Progéria/tratamento farmacológico , Progéria/genética , Fatores de Processamento de RNARESUMO
Repurposing previously approved drugs may fast track the route to the clinic for potential senotherapeutics and improves the inefficiency of the clinical drug development pipeline. We performed a repurposing screen of 240 clinically approved molecules in human primary dermal fibroblasts for their effects on CDKN2A expression. Molecules demonstrating effects on CDKN2A expression underwent secondary screening for senescence-associated beta galactosidase (SAB) activity, based on effect size, direction, and/or molecule identity. Selected molecules then underwent a more detailed assessment of senescence phenotypes including proliferation, apoptosis, DNA damage, senescence-associated secretory phenotype (SASP) expression, and regulators of alternative splicing. A selection of the molecules demonstrating effects on senescence were then used in a new bioinformatic structure-function screen to identify common structural motifs. In total, 90 molecules displayed altered CDKN2A expression at one or other dose, of which 15 also displayed effects on SAB positivity in primary human dermal fibroblasts. Of these, 3 were associated with increased SAB activity, and 11 with reduced activity. The female synthetic sex hormones-diethylstilboestrol, ethynyl estradiol and levonorgestrel-were all associated with a reduction in aspects of the senescence phenotype in male cells, with no effects visible in female cells. Finally, we identified that the 30 compounds that decreased CDKN2A activity the most had a common substructure linked to this function. Our results suggest that several drugs licensed for other indications may warrant exploration as future senotherapies, but that different donors and potentially different sexes may respond differently to senotherapeutic compounds. This underlines the importance of considering donor-related characteristics when designing drug screening platforms.
Assuntos
Senescência Celular , Senoterapia , Masculino , Humanos , Feminino , Reposicionamento de Medicamentos , Hormônios/farmacologiaRESUMO
Finding appropriate image analysis techniques for a particular purpose can be difficult. In the context of the analysis of immunocytochemistry images, where the key information lies in the number of nuclei containing co-localised fluorescent signals from a marker of interest, researchers often opt to use manual counting techniques because of the paucity of available tools. Here, we present the development and validation of the Fluorescence Imaging of Nuclear Staining (FINS) algorithm for the quantification of fluorescent signals from immunocytochemically stained cells. The FINS algorithm is based on a variational segmentation of the nuclear stain channel and an iterative thresholding procedure to count co-localised fluorescent signals from nuclear proteins in other channels. We present experimental results comparing the FINS algorithm to the manual counts of seven researchers across a dataset of three human primary cell types which are immunocytochemically stained for a nuclear marker (DAPI), a biomarker of cellular proliferation (Ki67), and a biomarker of DNA damage (γH2AX). The quantitative performance of the algorithm is analysed in terms of consistency with the manual count data and acquisition time. The FINS algorithm produces data consistent with that achieved by manual counting but improves the process by reducing subjectivity and time. The algorithm is simple to use, based on software that is omnipresent in academia, and allows data review with its simple, intuitive user interface. We hope that, as the FINS tool is open-source and is custom-built for this specific application, it will streamline the analysis of immunocytochemical images.