Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(17): e2302152120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068249

RESUMO

The primary antigenic and virulence determinant of the human malaria parasite Plasmodium falciparum is a variant surface protein called PfEMP1. Different forms of PfEMP1 are encoded by a multicopy gene family called var, and switching between active genes enables the parasites to evade the antibody response of their human hosts. var gene switching is key for the maintenance of chronic infections; however, what controls switching is unknown, although it has been suggested to occur at a constant frequency with little or no environmental influence. var gene transcription is controlled epigenetically through the activity of histone methyltransferases (HMTs). Studies in model systems have shown that metabolism and epigenetic control of gene expression are linked through the availability of intracellular S-adenosylmethionine (SAM), the principal methyl donor in biological methylation modifications, which can fluctuate based on nutrient availability. To determine whether environmental conditions and changes in metabolism can influence var gene expression, P. falciparum was cultured in media with altered concentrations of nutrients involved in SAM metabolism. We found that conditions that influence lipid metabolism induce var gene switching, indicating that parasites can respond to changes in their environment by altering var gene expression patterns. Genetic modifications that directly modified expression of the enzymes that control SAM levels similarly led to profound changes in var gene expression, confirming that changes in SAM availability modulate var gene switching. These observations directly challenge the paradigm that antigenic variation in P. falciparum follows an intrinsic, programed switching rate, which operates independently of any external stimuli.


Assuntos
Malária Falciparum , Parasitos , Animais , Humanos , Plasmodium falciparum/metabolismo , Parasitos/metabolismo , Regulação da Expressão Gênica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Variação Antigênica/genética
2.
Nature ; 551(7678): 95-99, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29094698

RESUMO

Pathogens have to balance transmission with persistence. For Plasmodium falciparum, the most widespread and virulent malaria parasite, persistence within its human host requires continuous asexual replication within red blood cells, while its mosquito-borne transmission depends on intra-erythrocytic differentiation into non-replicating sexual stages called gametocytes. Commitment to either fate is determined during the preceding cell cycle that begins with invasion by a single, asexually committed merozoite and ends, 48 hours later, with a schizont releasing newly formed merozoites, all committed to either continued asexual replication or differentiation into gametocytes. Sexual commitment requires the transcriptional activation of ap2-g (PF3D7_1222600), the master regulator of sexual development, from an epigenetically silenced state during asexual replication. AP2-G expression during this 'commitment cycle' prepares gene expression in nascent merozoites to initiate sexual development through a hitherto unknown mechanism. To maintain a persistent infection, the expression of ap2-g is limited to a sub-population of parasites (1-30%, depending on genetic background and growth conditions). As sexually committed schizonts comprise only a sub-population and are morphologically indistinguishable from their asexually committed counterparts, defining their characteristic gene expression has been difficult using traditional, bulk transcriptome profiling. Here we use highly parallel, single-cell RNA sequencing of malaria cultures undergoing sexual commitment to determine the transcriptional changes induced by AP2-G within this sub-population. By analysing more than 18,000 single parasite transcriptomes from a conditional AP2-G knockdown line and NF54 wild-type parasites at multiple stages of development, we show that sexually committed, AP2-G+ mature schizonts specifically upregulate additional regulators of gene expression, including other AP2 transcription factors, histone-modifying enzymes, and regulators of nucleosome positioning. These epigenetic regulators may act to facilitate the expression and/or repression of genes that are necessary for the initiation of gametocyte development in the subsequent cell cycle.


Assuntos
Gametogênese/genética , Malária/parasitologia , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma/genética , Ciclo Celular , Feminino , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Nucleossomos/genética , Nucleossomos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/fisiologia , Reprodução Assexuada , Esquizontes/citologia , Esquizontes/genética , Fatores de Transcrição/metabolismo
3.
BioDrugs ; 38(2): 205-226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38261155

RESUMO

Monoclonal antibodies (mAbs) have transformed therapeutic strategies for various diseases. Their high specificity to target antigens makes them ideal therapeutic agents for certain diseases. However, a challenge to their application in clinical practice is their potential risk to induce unwanted immune response, termed immunogenicity. This challenge drives the continued efforts to deimmunize these protein therapeutics while maintaining their pharmacokinetic properties and therapeutic efficacy. Because mAbs hold a central position in therapeutic strategies against an array of diseases, the importance of conducting comprehensive immunogenicity risk assessment during the drug development process cannot be overstated. Such assessment necessitates the employment of in silico, in vitro, and in vivo strategies to evaluate the immunogenicity risk of mAbs. Understanding the intricacies of the mechanisms that drive mAb immunogenicity is crucial to improving their therapeutic efficacy and safety and developing the most effective strategies to determine and mitigate their immunogenic risk. This review highlights recent advances in immunogenicity prediction strategies, with a focus on protein engineering strategies used throughout development to reduce immunogenicity.


Assuntos
Anticorpos Monoclonais , Engenharia de Proteínas , Humanos , Anticorpos Monoclonais/farmacologia
4.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379668

RESUMO

We recently adapted a CUT&RUN protocol for genome-wide profiling of chromatin modifications in the human malaria parasite Plasmodium Using the step-by-step protocol described below, we were able to generate high-quality profiles of multiple histone modifications using only a small fraction of the cells required for ChIP-seq. Using antibodies against two commonly profiled histone modifications, H3K4me3 and H3K9me3, we show here that CUT&RUN profiling is highly reproducible and closely recapitulates previously published ChIP-seq-based abundance profiles of histone marks. Finally, we show that CUT&RUN requires substantially lower sequencing coverage for accurate profiling compared with ChIP-seq.


Assuntos
Código das Histonas , Plasmodium falciparum , Humanos , Código das Histonas/genética , Imunoprecipitação da Cromatina/métodos , Plasmodium falciparum/genética , Processamento de Proteína Pós-Traducional , Sequenciamento de Cromatina por Imunoprecipitação
5.
Commun Biol ; 6(1): 205, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810637

RESUMO

Eukaryotes have canonical pathways for responding to amino acid (AA) availability. Under AA-limiting conditions, the TOR complex is repressed, whereas the sensor kinase GCN2 is activated. While these pathways have been highly conserved throughout evolution, malaria parasites are a rare exception. Despite auxotrophic for most AA, Plasmodium does not have either a TOR complex nor the GCN2-downstream transcription factors. While Ile starvation has been shown to trigger eIF2α phosphorylation and a hibernation-like response, the overall mechanisms mediating detection and response to AA fluctuation in the absence of such pathways has remained elusive. Here we show that Plasmodium parasites rely on an efficient sensing pathway to respond to AA fluctuations. A phenotypic screen of kinase knockout mutant parasites identified nek4, eIK1 and eIK2-the last two clustering with the eukaryotic eIF2α kinases-as critical for Plasmodium to sense and respond to distinct AA-limiting conditions. Such AA-sensing pathway is temporally regulated at distinct life cycle stages, allowing parasites to actively fine-tune replication and development in response to AA availability. Collectively, our data disclose a set of heterogeneous responses to AA depletion in malaria parasites, mediated by a complex mechanism that is critical for modulating parasite growth and survival.


Assuntos
Aminoácidos , Plasmodium , Aminoácidos/deficiência , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Plasmodium/enzimologia , Plasmodium/genética
6.
Nat Microbiol ; 8(7): 1280-1292, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277533

RESUMO

For Plasmodium falciparum, the most widespread and virulent malaria parasite that infects humans, persistence depends on continuous asexual replication in red blood cells, while transmission to their mosquito vector requires asexual blood-stage parasites to differentiate into non-replicating gametocytes. This decision is controlled by stochastic derepression of a heterochromatin-silenced locus encoding AP2-G, the master transcription factor of sexual differentiation. The frequency of ap2-g derepression was shown to be responsive to extracellular phospholipid precursors but the mechanism linking these metabolites to epigenetic regulation of ap2-g was unknown. Through a combination of molecular genetics, metabolomics and chromatin profiling, we show that this response is mediated by metabolic competition for the methyl donor S-adenosylmethionine between histone methyltransferases and phosphoethanolamine methyltransferase, a critical enzyme in the parasite's pathway for de novo phosphatidylcholine synthesis. When phosphatidylcholine precursors are scarce, increased consumption of SAM for de novo phosphatidylcholine synthesis impairs maintenance of the histone methylation responsible for silencing ap2-g, increasing the frequency of derepression and sexual differentiation. This provides a key mechanistic link that explains how LysoPC and choline availability can alter the chromatin status of the ap2-g locus controlling sexual differentiation.


Assuntos
Malária , Parasitos , Animais , Humanos , Parasitos/genética , Parasitos/metabolismo , Histonas/metabolismo , Diferenciação Sexual , Metilação , Epigênese Genética , Malária/parasitologia , Cromatina , Fosfatidilcolinas , Fosfolipídeos
7.
Sci Rep ; 9(1): 13131, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511546

RESUMO

Malaria parasites have a complex life cycle that includes specialized stages for transmission between their mosquito and human hosts. These stages are an understudied part of the lifecycle yet targeting them is an essential component of the effort to shrink the malaria map. The human parasite Plasmodium falciparum is responsible for the majority of deaths due to malaria. Our goal was to generate transgenic P. falciparum lines that could complete the lifecycle and produce fluorescent transmission stages for more in-depth and high-throughput studies. Using zinc-finger nuclease technology to engineer an integration site, we generated three transgenic P. falciparum lines in which tdtomato or gfp were stably integrated into the genome. Expression was driven by either stage-specific peg4 and csp promoters or the constitutive ef1a promoter. Phenotypic characterization of these lines demonstrates that they complete the life cycle with high infection rates and give rise to fluorescent mosquito stages. The transmission stages are sufficiently bright for intra-vital imaging, flow cytometry and scalable screening of chemical inhibitors and inhibitory antibodies.


Assuntos
Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Malária Falciparum/transmissão , Parasitos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Culicidae/parasitologia , Citometria de Fluxo/métodos , Engenharia Genética/métodos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Estágios do Ciclo de Vida , Proteínas Luminescentes/metabolismo , Malária Falciparum/parasitologia , Microscopia de Fluorescência/métodos , Parasitos/crescimento & desenvolvimento , Parasitos/fisiologia , Fenótipo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA