Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 118(1-2): 77-91, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35703459

RESUMO

Gram-negative pathogens like Burkholderia pseudomallei use trimeric autotransporter adhesins such as BpaC as key molecules in their pathogenicity. Our 1.4 Å crystal structure of the membrane-proximal part of the BpaC head domain shows that the domain is exclusively made of left-handed parallel ß-roll repeats. This, the largest such structure solved, has two unique features. First, the core, rather than being composed of the canonical hydrophobic Ile and Val, is made up primarily of the hydrophilic Thr and Asn, with two different solvent channels. Second, comparing BpaC to all other left-handed parallel ß-roll structures showed that the position of the head domain in the protein correlates with the number and type of charged residues. In BpaC, only negatively charged residues face the solvent-in stark contrast to the primarily positive surface charge of the left-handed parallel ß-roll "type" protein, YadA. We propose extending the definitions of these head domains to include the BpaC-like head domain as a separate subtype, based on its unusual sequence, position, and charge. We speculate that the function of left-handed parallel ß-roll structures may differ depending on their position in the structure.


Assuntos
Burkholderia pseudomallei , Adesinas Bacterianas/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Solventes , Sistemas de Secreção Tipo V , Virulência
2.
Q Rev Biophys ; 53: e9, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32772965

RESUMO

Flagellar dyneins are the molecular motors responsible for producing the propagating bending motions of cilia and flagella. They are located within a densely packed and highly organised super-macromolecular cytoskeletal structure known as the axoneme. Using the mesoscale simulation technique Fluctuating Finite Element Analysis (FFEA), which represents proteins as viscoelastic continuum objects subject to explicit thermal noise, we have quantified the constraints on the range of molecular conformations that can be explored by dynein-c within the crowded architecture of the axoneme. We subsequently assess the influence of crowding on the 3D exploration of microtubule-binding sites, and specifically on the axial step length. Our calculations combine experimental information on the shape, flexibility and environment of dynein-c from three distinct sources; negative stain electron microscopy, cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET). Our FFEA simulations show that the super-macromolecular organisation of multiple protein complexes into higher-order structures can have a significant influence on the effective flexibility of the individual molecular components, and may, therefore, play an important role in the physical mechanisms underlying their biological function.


Assuntos
Axonema/química , Dineínas/química , Flagelos/metabolismo , Substâncias Macromoleculares/química , Sítios de Ligação , Cílios/metabolismo , Simulação por Computador , Microscopia Crioeletrônica , Citoesqueleto/metabolismo , Módulo de Elasticidade , Análise de Elementos Finitos , Hidrólise , Cinética , Microtúbulos/metabolismo , Movimento (Física) , Probabilidade , Ligação Proteica , Conformação Proteica , Termodinâmica
3.
Methods ; 185: 39-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007556

RESUMO

Cytoplasmic dynein is responsible for intra-cellular transport in eukaryotic cells. Using Fluctuating Finite Element Analysis (FFEA), a novel algorithm that represents proteins as continuum viscoelastic solids subject to thermal noise, we are building computational tools to study the mechanics of these molecular machines. Here we present a methodology for obtaining the material parameters required to represent the flexibility of cytoplasmic dynein within FFEA from atomistic molecular dynamics (MD) simulations, and show that this continuum representation is sufficient to capture the principal dynamic properties of the motor.


Assuntos
Dineínas do Citoplasma/metabolismo , Análise de Elementos Finitos , Simulação de Dinâmica Molecular , Algoritmos , Dineínas do Citoplasma/química
4.
Hum Mutat ; 42(5): 567-576, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33600052

RESUMO

Amelogenesis imperfecta (AI) describes a heterogeneous group of developmental enamel defects that typically have Mendelian inheritance. Exome sequencing of 10 families with recessive hypomaturation AI revealed four novel and one known variants in the matrix metallopeptidase 20 (MMP20) gene that were predicted to be pathogenic. MMP20 encodes a protease that cleaves the developing extracellular enamel matrix and is necessary for normal enamel crystal growth during amelogenesis. New homozygous missense changes were shared between four families of Pakistani heritage (c.625G>C; p.(Glu209Gln)) and two of Omani origin (c.710C>A; p.(Ser237Tyr)). In two families of UK origin and one from Costa Rica, affected individuals were homozygous for the previously reported c.954-2A>T; p.(Ile319Phefs*19) variant. For each of these variants, microsatellite haplotypes appeared to exclude a recent founder effect, but elements of haplotype were conserved, suggesting more distant founding ancestors. New compound heterozygous changes were identified in one family of the European heritage: c.809_811+12delinsCCAG; p.(?) and c.1122A>C; p.(Gln374His). This report further elucidates the mutation spectrum of MMP20 and the probable impact on protein function, confirms a consistent hypomaturation phenotype and shows that mutations in MMP20 are a common cause of autosomal recessive AI in some communities.


Assuntos
Amelogênese Imperfeita , Metaloproteinase 20 da Matriz , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Efeito Fundador , Homozigoto , Humanos , Metaloproteinase 20 da Matriz/genética , Linhagem
5.
Hum Mutat ; 42(2): 164-176, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33252155

RESUMO

Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.


Assuntos
Oftalmopatias Hereditárias , Receptor Quinase 1 Acoplada a Proteína G , Cegueira Noturna , Oftalmopatias Hereditárias/genética , Receptor Quinase 1 Acoplada a Proteína G/genética , Humanos , Cegueira Noturna/genética
6.
Proc Natl Acad Sci U S A ; 115(1): E72-E81, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247053

RESUMO

Protein-protein interactions are essential for the control of cellular functions and are critical for regulation of the immune system. One example is the binding of Fc regions of IgG to the Fc gamma receptors (FcγRs). High sequence identity (98%) between the genes encoding FcγRIIIa (expressed on macrophages and natural killer cells) and FcγRIIIb (expressed on neutrophils) has prevented the development of monospecific agents against these therapeutic targets. We now report the identification of FcγRIIIa-specific artificial binding proteins called "Affimer" that block IgG binding and abrogate FcγRIIIa-mediated downstream effector functions in macrophages, namely TNF release and phagocytosis. Cocrystal structures and molecular dynamics simulations have revealed the structural basis of this specificity for two Affimer proteins: One binds directly to the Fc binding site, whereas the other acts allosterically.


Assuntos
Complexo Antígeno-Anticorpo/química , Imunoglobulina G/química , Simulação de Dinâmica Molecular , Receptores de IgG/química , Regulação Alostérica , Complexo Antígeno-Anticorpo/imunologia , Humanos , Imunoglobulina G/imunologia , Receptores de IgG/imunologia
7.
Biophys J ; 119(11): 2240-2250, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33121942

RESUMO

Assessing the structural properties of large proteins is important to gain an understanding of their function in, e.g., biological systems or biomedical applications. We propose a method to examine the mechanical properties of proteins subject to applied forces by means of multiscale simulation. Both stretching and torsional forces are considered, and these may be applied independently of each other. As a proof of principle, we apply torsional forces to a coarse-grained continuum model of the antibody protein immunoglobulin G using fluctuating finite element analysis and use it to identify the area of strongest deformation. This region is essential to the torsional properties of the molecule as a whole because it represents the softest, most deformable domain. Zooming in, this part of the molecule is subjected to torques and stretching forces using molecular dynamics simulations on an atomistically resolved level to investigate its torsional properties. We calculate the torsional resistance as a function of the rotation of the domain while subjecting it to various stretching forces. From this, we assess how the measured twist-torque profiles develop with increasing stretching force and show that they exhibit torsion stiffening, in qualitative agreement with experimental findings. We argue that combining the twist-torque profiles for various stretching forces effectively results in a combined force-torque spectroscopy analysis, which may serve as a mechanical signature for a biological macromolecule.


Assuntos
Torque , Análise de Elementos Finitos , Rotação , Análise Espectral , Torção Mecânica
8.
PLoS Comput Biol ; 15(5): e1006958, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31095554

RESUMO

Improvements in technology often drive scientific discovery. Therefore, research requires sustained investment in the latest equipment and training for the researchers who are going to use it. Prioritising and administering infrastructure investment is challenging because future needs are difficult to predict. In the past, highly computationally demanding research was associated primarily with particle physics and astronomy experiments. However, as biology becomes more quantitative and bioscientists generate more and more data, their computational requirements may ultimately exceed those of physical scientists. Computation has always been central to bioinformatics, but now imaging experiments have rapidly growing data processing and storage requirements. There is also an urgent need for new modelling and simulation tools to provide insight and understanding of these biophysical experiments. Bioscience communities must work together to provide the software and skills training needed in their areas. Research-active institutions need to recognise that computation is now vital in many more areas of discovery and create an environment where it can be embraced. The public must also become aware of both the power and limitations of computing, particularly with respect to their health and personal data.


Assuntos
Biologia Computacional/tendências , Curadoria de Dados/tendências , Animais , Simulação por Computador/tendências , Humanos , Modelos Biológicos , Software
9.
Soft Matter ; 16(32): 7544-7555, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32706006

RESUMO

KOBRA (KirchOff Biological Rod Algorithm) is an algorithm and software package designed to perform dynamical simulations of elongated biomolecules such as those containing alpha-helices and coiled-coils. It represents these as coarsely-discretised Kirchoff rods, with linear elements that can stretch, bend and twist independently. These rods can have anisotropic and inhomogeneous parameters and bent or twisted equilibrium structures, allowing for a coarse-grained parameterisation of complex biological structures. Each element is non-inertial and subject to thermal fluctuations. The speed and simplicity of the algorithm allows KOBRA rods to easily access timescales from nanoseconds to seconds. To demonstrate this functionality, a KOBRA rod was parameterised using data from all-atom simulations of the Ndc80 protein complex, and compared against these simulations and negative-stain EM images. The distribution of bend angles and principal components were highly correlated between KOBRA, all-atom molecular dynamics, and experimental data. The properties of a hinge region, thought to be found at an unstructured loop, were studied. A C++ implementation of KOBRA is available under the GNU GPLv3 free software licence.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Algoritmos
10.
Nat Methods ; 13(1): 55-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26569599

RESUMO

We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼ 140 µs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.


Assuntos
DNA/química , Teoria Quântica
11.
PLoS Comput Biol ; 14(3): e1005897, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29570700

RESUMO

Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 µm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.


Assuntos
Biologia Computacional/métodos , Análise de Elementos Finitos , Proteínas , Software , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Proteínas/ultraestrutura
12.
Nucleic Acids Res ; 44(19): 9121-9130, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27664220

RESUMO

It is well established that gene regulation can be achieved through activator and repressor proteins that bind to DNA and switch particular genes on or off, and that complex metabolic networks determine the levels of transcription of a given gene at a given time. Using three complementary computational techniques to study the sequence-dependence of DNA denaturation within DNA minicircles, we have observed that whenever the ends of the DNA are constrained, information can be transferred over long distances directly by the transmission of mechanical stress through the DNA itself, without any requirement for external signalling factors. Our models combine atomistic molecular dynamics (MD) with coarse-grained simulations and statistical mechanical calculations to span three distinct spatial resolutions and timescale regimes. While they give a consensus view of the non-locality of sequence-dependent denaturation in highly bent and supercoiled DNA loops, each also reveals a unique aspect of long-range informational transfer that occurs as a result of restraining the DNA within the closed loop of the minicircles.


Assuntos
Simulação por Computador , DNA Circular/química , Modelos Moleculares , Conformação de Ácido Nucleico , Estresse Mecânico , Algoritmos , DNA Super-Helicoidal/química , Desnaturação de Ácido Nucleico
13.
Nucleic Acids Res ; 44(10): 4947-56, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27016739

RESUMO

The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Regiões Operadoras Genéticas , Proteínas Repressoras/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Plasmídeos/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
14.
Biophys J ; 112(3): 523-531, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28108011

RESUMO

We have explored the interdependence of the binding of a DNA triplex and a repressor protein to distal recognition sites on supercoiled DNA minicircles using MD simulations. We observe that the interaction between the two ligands through their influence on their DNA template is determined by a subtle interplay of DNA mechanics and electrostatics, that the changes in flexibility induced by ligand binding play an important role and that supercoiling can instigate additional ligand-DNA contacts that would not be possible in simple linear DNA sequences.


Assuntos
DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , DNA/química , DNA/metabolismo , Sequência de Bases , DNA/genética , DNA Super-Helicoidal/genética , Ligantes , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligação Proteica
15.
Biopolymers ; 2017 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-29127706

RESUMO

Self-assembling peptides can be used as versatile, natural, and multifunctional building blocks to produce a variety of well-defined nanostructures, materials and devices for applications in medicine and nanotechnology. Here, we concentrate on the 1D self-assembly of de novo designed Px-2 peptide ß-strands into anti-parallel ß-sheet tapes and higher order aggregates. We study six members of the Px-2 family, ranging from 3 amino acids (aa) to 13 aa in length, using a range of complementary experimental techniques, computer simulation and theoretical statistical mechanics. The critical concentration for self-assembly (c*) is found to increase systematically with decreasing peptide length. The shortest peptide found to self-assemble into soluble ß-tapes in water is a 5 amino acid residue peptide. These investigations help decipher the role of the peptide length in controlling self-assembly, aggregate morphology, and material properties. By extracting free energies from these data using a statistical mechanical analysis and combining the results with computer simulations at the atomistic level, we can extract the entropy of association for individual ß-strands.

16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 162-72, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615870

RESUMO

Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.


Assuntos
Simulação por Computador , Ácidos Nucleicos/química , Proteínas/química , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Teoria Quântica
17.
Biophys J ; 107(3): 700-710, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25099809

RESUMO

In Förster resonance energy transfer (FRET) experiments, extracting accurate structural information about macromolecules depends on knowing the positions and orientations of donor and acceptor fluorophores. Several approaches have been employed to reduce uncertainties in quantitative FRET distance measurements. Fluorophore-position distributions can be estimated by surface accessibility (SA) calculations, which compute the region of space explored by the fluorophore within a static macromolecular structure. However, SA models generally do not take fluorophore shape, dye transition-moment orientation, or dye-specific chemical interactions into account. We present a detailed molecular-dynamics (MD) treatment of fluorophore dynamics for an ATTO donor/acceptor dye pair and specifically consider as case studies dye-labeled protein-DNA intermediates in Cre site-specific recombination. We carried out MD simulations in both an aqueous solution and glycerol/water mixtures to assess the effects of experimental solvent systems on dye dynamics. Our results unequivocally show that MD simulations capture solvent effects and dye-dye interactions that can dramatically affect energy transfer efficiency. We also show that results from SA models and MD simulations strongly diverge in cases where donor and acceptor fluorophores are in close proximity. Although atomistic simulations are computationally more expensive than SA models, explicit MD studies are likely to give more realistic results in both homogeneous and mixed solvents. Our study underscores the model-dependent nature of FRET analyses, but also provides a starting point to develop more realistic in silico approaches for obtaining experimental ensemble and single-molecule FRET data.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Integrases/química , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Sequência de Bases , DNA/metabolismo , Integrases/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Solubilidade
18.
Q Rev Biophys ; 45(3): 257-299, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22850561

RESUMO

The predominant protein-centric perspective in protein-DNA-binding studies assumes that the protein drives the interaction. Research focuses on protein structural motifs, electrostatic surfaces and contact potentials, while DNA is often ignored as a passive polymer to be manipulated. Recent studies of DNA topology, the supercoiling, knotting, and linking of the helices, have shown that DNA has the capability to be an active participant in its transactions. DNA topology-induced structural and geometric changes can drive, or at least strongly influence, the interactions between protein and DNA. Deformations of the B-form structure arise from both the considerable elastic energy arising from supercoiling and from the electrostatic energy. Here, we discuss how these energies are harnessed for topology-driven, sequence-specific deformations that can allow DNA to direct its own metabolism.


Assuntos
DNA/metabolismo , Proteínas/metabolismo , Células/metabolismo , DNA/química , DNA/genética , DNA Super-Helicoidal/química , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Humanos , Modelos Moleculares , Proteínas/química
19.
Proteins ; 82(12): 3298-311, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25174610

RESUMO

Advances in structural biology, such as cryo-electron microscopy (cryo-EM) have allowed for a number of sophisticated protein complexes to be characterized. However, often only a static snapshot of a protein complex is visualized despite the fact that conformational change is frequently inherent to biological function, as is the case for molecular motors. Computer simulations provide valuable insights into the different conformations available to a particular system that are not accessible using conventional structural techniques. For larger proteins and protein complexes, where a fully atomistic description would be computationally prohibitive, coarse-grained simulation techniques such as Elastic Network Modeling (ENM) are often employed, whereby each atom or group of atoms is linked by a set of springs whose properties can be customized according to the system of interest. Here we compare ENM with a recently proposed continuum model known as Fluctuating Finite Element Analysis (FFEA), which represents the biomolecule as a viscoelastic solid subject to thermal fluctuations. These two complementary computational techniques are used to answer a critical question in the rotary ATPase family; implicit within these motors is the need for a rotor axle and proton pump to rotate freely of the motor domain and stator structures. However, current single particle cryo-EM reconstructions have shown an apparent connection between the stators and rotor axle or pump region, hindering rotation. Both modeling approaches show a possible role for this connection and how it would significantly constrain the mobility of the rotary ATPase family.


Assuntos
Proteínas de Bactérias/química , Proteínas de Insetos/química , Modelos Moleculares , ATPases Translocadoras de Prótons/química , Proteínas de Saccharomyces cerevisiae/química , ATPases Vacuolares Próton-Translocadoras/química , Animais , Proteínas de Bactérias/metabolismo , Biocatálise , Bases de Dados de Proteínas , Módulo de Elasticidade , Análise de Elementos Finitos , Proteínas de Insetos/metabolismo , Manduca/enzimologia , Simulação de Dinâmica Molecular , Análise de Componente Principal , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Thermus thermophilus/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
20.
Structure ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39454567

RESUMO

Myosin 5a (Myo5a) is a dimeric processive motor protein that transports cellular cargos along filamentous actin (F-actin). Its long lever is responsible for its large power-stroke, step size, and load-bearing ability. Little is known about the levers' structure and physical properties, and how they contribute to walking mechanics. Using cryoelectron microscopy (cryo-EM) and molecular dynamics (MD) simulations, we resolved the structure of monomeric Myo5a, comprising the motor domain and full-length lever, bound to F-actin. The range of its lever conformations revealed its physical properties, how stiffness varies along its length and predicts a large, 35 nm, working stroke. Thus, the newly released trail head in a dimeric Myo5a would only need to perform a small diffusive search for its new binding site on F-actin, and stress would only be generated across the dimer once phosphate is released from the lead head, revealing new insight into the walking behavior of Myo5a.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA