Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Cell Sci ; 136(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37232246

RESUMO

Endocytic recycling controls the return of internalised cargoes to the plasma membrane to coordinate their positioning, availability and downstream signalling. The Rab4 and Rab11 small GTPase families regulate distinct recycling routes, broadly classified as fast recycling from early endosomes (Rab4) and slow recycling from perinuclear recycling endosomes (Rab11), and both routes handle a broad range of overlapping cargoes to regulate cell behaviour. We adopted a proximity labelling approach, BioID, to identify and compare the protein complexes recruited by Rab4a, Rab11a and Rab25 (a Rab11 family member implicated in cancer aggressiveness), revealing statistically robust protein-protein interaction networks of both new and well-characterised cargoes and trafficking machinery in migratory cancer cells. Gene ontological analysis of these interconnected networks revealed that these endocytic recycling pathways are intrinsically connected to cell motility and cell adhesion. Using a knock-sideways relocalisation approach, we were further able to confirm novel links between Rab11, Rab25 and the ESCPE-1 and retromer multiprotein sorting complexes, and identify new endocytic recycling machinery associated with Rab4, Rab11 and Rab25 that regulates cancer cell migration in the 3D matrix.


Assuntos
Proteínas rab de Ligação ao GTP , Proteínas rab4 de Ligação ao GTP , Humanos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Transporte Biológico , Transporte Proteico/fisiologia , Endossomos/metabolismo
2.
Curr Biol ; 34(3): 641-647.e5, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38218186

RESUMO

Although events are not always known to be important when they occur, people can remember details about such incidentally encoded information using episodic memory. Importantly, when information is explicitly encoded for use in an expected test of retention (as in most assessments in animals), it is possible that it is used to generate a planned action1,2,3; thus, the remembered action can occur without remembering the earlier episode. By contrast, when a test is unexpected, transforming information into an action plan is unlikely because the importance of the information and the nature of the test are not yet known. Thus, accurate performance in an unexpected test after incidental encoding documents episodic memory.1,2,3,4,5,6,7,8 Here, we present evidence that rats replay episodic memories of incidentally encoded information in an unexpected assessment of memory. In one task,9 rats reported the third-last item in an explicitly encoded list of trial-unique odors. In a second task,10 rats foraged in a radial maze in the absence of odors. On a critical test, rats foraged in the radial maze, but scented lids covered the food. Next, memory of the third-last odor was assessed. All participating rats correctly answered the unexpected question. These results suggest that rats encoded multiple pieces of putatively unimportant information, and later they replayed a stream of episodic memories when that information was needed to solve an unexpected problem. We propose that rats replay episodic memories of incidentally encoded information, which documents a critical aspect of human episodic memory in a non-human animal.


Assuntos
Memória Episódica , Animais , Ratos , Alimentos , Rememoração Mental , Odorantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA