RESUMO
The emergence of attractive properties in materials at atomically thin regimes has seen an ongoing interest in two-dimensional (2D) materials. An aspect that has lacked focused attention is the effect of 2D material thickness on its crystal structure. As several layered materials naturally exist in mixed metastable phases, it raises an important question of whether a specific polymorph of these mixed-phase materials will be favored at atomically thin limits. This work attempts to address this issue by employing lead monoxide as a model 2D polymorphic system. We propose a reactive oxygen species (ROS) sequestration-mediated liquid-phase exfoliation (LPE) strategy for the facile synthesis of ultrathin PbO. This is followed by a suite of microscopic and spectroscopic analyses of the PbO nanosheets that reveals the polymorphic transformation of orthorhombic (ß) PbO to its tetragonal (α) analogue with reduction in nanosheet thickness. The transformation process reveals an interesting crystal structure of ultrathin 2D PbO where [001]-oriented domains of α-PbO coexist alongside [100]-oriented regions of ß-PbO. Density functional theory (DFT) calculations support our experimental data by revealing a higher thermodynamic stability of the tetragonal phase in PbO monolayers. These findings are likely to instigate interest in carefully evaluating the crystal structures of ultrathin 2D materials while promoting research in understanding the phase transformation across a range of 2D crystals.
RESUMO
Single-atom and single-particle catalysis is an area of considerable topical interest due to their potential in explaining important fundamental processes and applications across several areas. An interesting avenue in single-particle catalysis is spatial control of chemical reactivity within the particle by employing light as an external stimulus. To demonstrate this concept, we report galvanic replacement reactions (GRRs) as a spatial marker of subparticle chemical reactivity of a silver nanoprism with AuCl4- ions under optical excitation. The location of a GRR within a single Ag nanoprism can be spatially controlled depending on the plasmon mode excited. This leads to chemomorphological transformation of Ag nanoprisms into interesting Ag-Au structures. This spatial biasing effect is attributed to localized hot electron injection from the tips and edges of the silver nanoprisms to the adjacent reactants that correlate with excitation of different surface plasmon modes. The study also employs low-energy-loss EELS mapping to additionally probe the spatially confined redox reaction within a silver nanoprism. The findings presented here allow the visualization of a plasmon-driven subparticle chemical transformation with high resolution. The selective optical excitation of surface plasmon eigenmodes of anisotropic nanoparticles offers opportunities to spatially modulate chemical transformations mediated by hot electron transfer.