Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 61(6): C143-C153, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201039

RESUMO

The development of compact quasimonoenergetic x-ray radiation sources based on laser Compton scattering (LCS) offers opportunities for novel approaches to medical imaging. However, careful experimental design is required to fully utilize the angle-correlated x-ray spectra produced by LCS sources. Direct simulations of LCS x-ray spectra are computationally expensive and difficult to employ in experimental optimization. In this manuscript, we present a computational method that fully characterizes angle-correlated LCS x-ray spectra at any end point energy within a range defined by three direct simulations. With this approach, subsequent LCS x-ray spectra can be generated with up to 200 times less computational overhead.


Assuntos
Lasers , Luz , Diagnóstico por Imagem , Raios X
2.
Phys Rev Lett ; 111(4): 044801, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931374

RESUMO

In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. These effects are discussed, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA