Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 536(7616): 312-6, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27383783

RESUMO

Three-dimensional organic-inorganic perovskites have emerged as one of the most promising thin-film solar cell materials owing to their remarkable photophysical properties, which have led to power conversion efficiencies exceeding 20 per cent, with the prospect of further improvements towards the Shockley-Queisser limit for a single­junction solar cell (33.5 per cent). Besides efficiency, another critical factor for photovoltaics and other optoelectronic applications is environmental stability and photostability under operating conditions. In contrast to their three-dimensional counterparts, Ruddlesden-Popper phases--layered two-dimensional perovskite films--have shown promising stability, but poor efficiency at only 4.73 per cent. This relatively poor efficiency is attributed to the inhibition of out-of-plane charge transport by the organic cations, which act like insulating spacing layers between the conducting inorganic slabs. Here we overcome this issue in layered perovskites by producing thin films of near-single-crystalline quality, in which the crystallographic planes of the inorganic perovskite component have a strongly preferential out-of-plane alignment with respect to the contacts in planar solar cells to facilitate efficient charge transport. We report a photovoltaic efficiency of 12.52 per cent with no hysteresis, and the devices exhibit greatly improved stability in comparison to their three-dimensional counterparts when subjected to light, humidity and heat stress tests. Unencapsulated two-dimensional perovskite devices retain over 60 per cent of their efficiency for over 2,250 hours under constant, standard (AM1.5G) illumination, and exhibit greater tolerance to 65 per cent relative humidity than do three-dimensional equivalents. When the devices are encapsulated, the layered devices do not show any degradation under constant AM1.5G illumination or humidity. We anticipate that these results will lead to the growth of single-crystalline, solution-processed, layered, hybrid, perovskite thin films, which are essential for high-performance opto-electronic devices with technologically relevant long-term stability.

2.
Nano Lett ; 21(9): 3745-3752, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33877843

RESUMO

The control of morphology in bioinspired chromophore assemblies is key to the rational design of functional materials for light harvesting. We investigate here morphological changes in perylene monoimide chromophore assemblies during thermal annealing in aqueous environments of high ionic strength to screen electrostatic repulsion. We found that annealing under these conditions leads to the growth of extra-large ribbon-shaped crystalline supramolecular polymers of widths from about 100 nm to several micrometers and lengths from 1 to 10 µm while still maintaining a unimolecular thickness. This growth process was monitored by variable-temperature absorbance spectroscopy, synchrotron X-ray scattering, and confocal microscopy. The extra-large single-crystal-like supramolecular polymers are highly porogenic, thus creating loosely packed hydrogel scaffolds that showed greatly enhanced photocatalytic hydrogen production with turnover numbers as high as 13 500 over ∼110 h compared to 7500 when smaller polymers are used. Our results indicate great functional opportunities in thermally and pathway-controlled supramolecular polymerization.


Assuntos
Perileno , Hidrogênio , Polimerização , Polímeros , Eletricidade Estática
3.
Proc Natl Acad Sci U S A ; 115(36): 8883-8888, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30131427

RESUMO

One-dimensional nanostructures such as carbon nanotubes and actin filaments rely on strong and directional interactions to stabilize their high aspect ratio shapes. This requirement has precluded making isolated, long, thin organic nanotubes by stacking molecular macrocycles, as their noncovalent stacking interactions are generally too weak. Here we report high aspect ratio (>103), lyotropic nanotubes of stacked, macrocyclic, iminium salts, which are formed by protonation of the corresponding imine-linked macrocycles. Iminium ion formation establishes cohesive interactions that, in organic solvent (tetrahydrofuran), are two orders of magnitude stronger than the neutral macrocycles, as explained by physical arguments and demonstrated by molecular dynamics simulations. Nanotube formation stabilizes the iminium ions, which otherwise rapidly hydrolyze, and is reversed and restored upon addition of bases and acids. Acids generated by irradiating a photoacid generator or sonicating chlorinated solvents also induced nanotube assembly, allowing these nanostructures to be coupled to diverse stimuli, and, once assembled, they can be fixed permanently by cross-linking their pendant alkenes. As large macrocyclic chromonic liquid crystals, these iminium salts are easily accessible through a modular design and provide a means to rationally synthesize structures that mimic the morphology and rheology of carbon nanotubes and biological tubules.

4.
J Am Chem Soc ; 139(17): 6120-6127, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28436654

RESUMO

The energy landscape of a supramolecular material can include different molecular packing configurations that differ in stability and function. We report here on a thermally driven crystalline order transition in the landscape of supramolecular nanostructures formed by charged chromophore amphiphiles in salt-containing aqueous solutions. An irreversible transition was observed from a metastable to a stable crystal phase within the nanostructures. In the stable crystalline phase, the molecules end up organized in a short scroll morphology at high ionic strengths and as long helical ribbons at lower salt content. This is interpreted as the result of the competition between electrostatic repulsive forces and attractive molecular interactions. Only the stable phase forms charge-transfer excitons upon exposure to visible light as indicated by absorbance and fluorescence features, second-order harmonic generation microscopy, and femtosecond transient absorbance spectroscopy. Interestingly, the supramolecular reconfiguration to the stable crystalline phase nanostructures enhances photosensitization of a proton reduction catalyst for hydrogen production.


Assuntos
Imidas/química , Perileno/química , Catálise , Cristalização , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Nanoestruturas/química , Tamanho da Partícula , Transição de Fase , Processos Fotoquímicos , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
5.
J Am Chem Soc ; 137(13): 4414-23, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25768124

RESUMO

A new series of metal-free organic chromophores (TPA-TTAR-A (1), TPA-T-TTAR-A (2), TPA-TTAR-T-A (3), and TPA-T-TTAR-T-A (4)) are synthesized for application in dye-sensitized solar cells (DSSC) based on a donor-π-bridge-acceptor (D-π-A) design. Here a simple triphenylamine (TPA) moiety serves as the electron donor, a cyanoacrylic acid as the electron acceptor and anchoring group, and a novel tetrathienoacene (TTA) as the π-bridge unit. Because of the extensively conjugated TTA π-bridge, these dyes exhibit high extinction coefficients (4.5-5.2 × 10(4) M(-1) cm(-1)). By strategically inserting a thiophene spacer on the donor or acceptor side of the molecules, the electronic structures of these TTA-based dyes can be readily tuned. Furthermore, addition of a thiophene spacer has a significant influence on the dye orientation and self-assembly modality on TiO2 surfaces. The insertion of a thiophene between the π-bridge and the cyanoacrylic acid anchoring group in TPA-TTAR-T-A (dye 3) promotes more vertical dye orientation and denser packing on TiO2 (molecular footprint = 79 Å(2)), thus enabling optimal dye loading. Using dye 3, a DSSC power conversion efficiency (PCE) of 10.1% with Voc = 0.833 V, Jsc = 16.5 mA/cm(2), and FF = 70.0% is achieved, among the highest reported to date for metal-free organic DSSC sensitizers using an I(-)/I3(-) redox shuttle. Photophysical measurements on dye-grafted TiO2 films reveal that the additional thiophene unit in dye 3 enhances the electron injection efficiency, in agreement with the high quantum efficiency.

6.
Chem Sci ; 10(22): 5779-5786, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31293765

RESUMO

The development of stimuli-responsive amphiphilic supramolecular nanostructures is an attractive target for systems based on light-absorbing chromophores that can function as photosensitizers in water. We report here on a water soluble supramolecular carboxylated perylene monoimide system in which charge can be switched significantly by a change in pH. This was accomplished by substituting the perylene core with an ionizable hydroxyl group. In acidic environments, crystalline supramolecular nanoribbons with dimensions on the order of 500 × 50 × 2 nm form readily, while in basic solution the additional electrostatic repulsion of the ionized hydroxyl reduces assemblies to very small dimensions on the order of only several nanometers. The HOMO/LUMO levels were also found to be sensitive to pH; in acidic media the HOMO/LUMO levels are -5.65 and -3.70 eV respectively versus vacuum, whereas is in basic conditions they are -4.90 and -3.33 eV, respectively. Utilizing the assemblies as photosensitizers in photocatalytic production of hydrogen with [Mo3S13]2- as a catalyst at a pH of 4, H2 was generated with a turnover number of 125 after 18 hours. Charge switching the assemblies at a pH of 9-10 and using an iron porphyrin catalyst, protons could again be reduced to hydrogen and CO2 was reduced to CO with a turnover number of 30. The system investigated offers an example of dynamic photosensitizing assemblies that can drive reactions in both acidic and basic media.

7.
Chem ; 4(7): 1596-1608, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30740552

RESUMO

Supramolecular light-absorbing nanostructures are useful building blocks for the design of next-generation artificial photosynthetic systems. Development of such systems requires a detailed understanding of how molecular packing influences the material's optoelectronic properties. We describe a series of crystalline supramolecular nanostructures in which the substituents on their monomeric units strongly affects morphology, ordering kinetics, and exciton behavior. By designing constitutionally-isomeric perylene monoimide (PMI) amphiphiles, the effect of side chain sterics on nanostructure crystallization was studied. Molecules with short amine linked alkyl-tails rapidly crystallize upon dissolution in water, while bulkier tails require the addition of salt to screen electrostatic repulsion and annealing to drive crystallization. A PMI monomer bearing a 3-pentylamine tail was found to possess a unique structure that results in strongly red-shifted absorbance, indicative of charge-transfer exciton formation. This particular supramolecular structure was found to have an enhanced ability to photosensitize a thiomolybdate, [(NH4)2Mo3S13], catalyst to generate hydrogen gas.

8.
ChemSusChem ; 9(18): 2656-2665, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27628708

RESUMO

Although reactive additives have been employed in perovskite solar cells to enhance film morphology and significantly increase device performance, little is known about the effect of these additives on perovskite structural and optical properties. Here we report a systematic study of how the properties of methylammonium lead iodide perovskite (CH3 NH3 PbI3 ) are influenced by hydrohalic acid additives (HX; X=I, Br, Cl) in the precursor solution. Detailed structural and optical spectroscopic analysis reveals that all three acids affect the optical properties and alter the unit cell lattice parameters. Depending on the identity and concentration of HX, optical bandgaps widen or compress: addition of HBr yields a wider bandgap, whereas HI compresses the gap at high concentrations; HCl, on the other hand, has no significant effect on the bandgap. These changes can be understood by correlating them with the types of defects present in polycrystalline perovskite thin films in combination with the structural strain induced in very small crystallites. The presence of extra halides from HX in the precursor solution enables filling of the lattice vacancies in the perovskite, thereby altering metal-halogen-metal bond connectivity and consequently cell volumes and optical bandgaps. Remarkably, a room temperature tetragonal→cubic phase transition is observed for CH3 NH3 PbI3 films treated with high HX concentrations. Further insights into this anomalous phase transformation are obtained from in situ variable-temperature X-ray diffraction in the 25-55 °C (298-328 K) range, revealing a monotonic fall in transition temperature with increasing precursor solution HX concentration.


Assuntos
Ácidos não Carboxílicos/química , Iodetos/química , Chumbo/química , Metilaminas/química , Transição de Fase , Temperatura , Modelos Moleculares , Conformação Molecular , Fenômenos Ópticos
9.
J Inorg Biochem ; 140: 94-103, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25086237

RESUMO

In the present study we have synthesized a novel amphiphilic porphyrin and its Ag(II) complex through modification of water-soluble porphyrinic structure in order to increase its lipophilicity and in turn pharmacological potency. New cationic non-symmetrical meso-substituted porphyrins were characterized by UV-visible, electrospray ionization mass spectrometry (ESI-MS), (1)H NMR techniques, lipophilicity (thin-layer chromatographic retention factor, Rf), and elemental analysis. The key toxicological profile (i.e. cytotoxicity and cell line- (cancer type-) specificity; genotoxicity; cell cycle effects) of amphiphilic Ag porphyrin was studied in human normal and cancer cell lines of various tissue origins and compared with its water-soluble analog. Structural modification of the molecule from water-soluble to amphiphilic resulted in a certain increase in the cytotoxicity and a decrease in cell line-specificity. Importantly, Ag(II) porphyrin showed less toxicity to normal cells and greater toxicity to their cancerous counterparts as compared to cisplatin. The amphiphilic complex was also not genotoxic and demonstrated a slight cytostatic effect via the cell cycle delay due to the prolongation of S-phase. As expected, the performed structural modification affected also the photocytotoxic activity of metal-free amphiphilic porphyrin. The ligand tested on cancer cell line revealed a dramatic (more than 70-fold) amplification of its phototoxic activity as compared to its water-soluble tetracationic metal-free analog. The compound combines low dark cytotoxicity with 5 fold stronger phototoxicity relative to Chlorin e6 and could be considered as a potential photosensitizer for further development in photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Porfirinas/química , Prata/química , Antineoplásicos/química , Cátions , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA