Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 185(24): 4541-4559.e23, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36334588

RESUMO

The encoding of touch in the spinal cord dorsal horn (DH) and its influence on tactile representations in the brain are poorly understood. Using a range of mechanical stimuli applied to the skin, large-scale in vivo electrophysiological recordings, and genetic manipulations, here we show that neurons in the mouse spinal cord DH receive convergent inputs from both low- and high-threshold mechanoreceptor subtypes and exhibit one of six functionally distinct mechanical response profiles. Genetic disruption of DH feedforward or feedback inhibitory motifs, comprised of interneurons with distinct mechanical response profiles, revealed an extensively interconnected DH network that enables dynamic, flexible tuning of postsynaptic dorsal column (PSDC) output neurons and dictates how neurons in the primary somatosensory cortex respond to touch. Thus, mechanoreceptor subtype convergence and non-linear transformations at the earliest stage of the somatosensory hierarchy shape how touch of the skin is represented in the brain.


Assuntos
Mecanorreceptores , Corno Dorsal da Medula Espinal , Animais , Camundongos , Tato/fisiologia , Interneurônios , Encéfalo , Medula Espinal
2.
Cell ; 184(22): 5608-5621.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34637701

RESUMO

Mammals use glabrous (hairless) skin of their hands and feet to navigate and manipulate their environment. Cortical maps of the body surface across species contain disproportionately large numbers of neurons dedicated to glabrous skin sensation, in part reflecting a higher density of mechanoreceptors that innervate these skin regions. Here, we find that disproportionate representation of glabrous skin emerges over postnatal development at the first synapse between peripheral mechanoreceptors and their central targets in the brainstem. Mechanoreceptor synapses undergo developmental refinement that depends on proximity of their terminals to glabrous skin, such that those innervating glabrous skin make synaptic connections that expand their central representation. In mice incapable of sensing gentle touch, mechanoreceptors innervating glabrous skin still make more powerful synapses in the brainstem. We propose that the skin region a mechanoreceptor innervates controls the developmental refinement of its central synapses to shape the representation of touch in the brain.


Assuntos
Tronco Encefálico/metabolismo , Mecanorreceptores/metabolismo , Sinapses/metabolismo , Percepção do Tato/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Canais Iônicos/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Imagem Óptica , Optogenética , Pele/inervação
3.
Cell ; 170(5): 986-999.e16, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28823559

RESUMO

Neuronal representations change as associations are learned between sensory stimuli and behavioral actions. However, it is poorly understood whether representations for learned associations stabilize in cortical association areas or continue to change following learning. We tracked the activity of posterior parietal cortex neurons for a month as mice stably performed a virtual-navigation task. The relationship between cells' activity and task features was mostly stable on single days but underwent major reorganization over weeks. The neurons informative about task features (trial type and maze locations) changed across days. Despite changes in individual cells, the population activity had statistically similar properties each day and stable information for over a week. As mice learned additional associations, new activity patterns emerged in the neurons used for existing representations without greatly affecting the rate of change of these representations. We propose that dynamic neuronal activity patterns could balance plasticity for learning and stability for memory.


Assuntos
Aprendizagem , Neurônios/citologia , Lobo Parietal/citologia , Animais , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Lobo Parietal/fisiologia , Análise de Célula Única
4.
Nature ; 627(8003): 367-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383788

RESUMO

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Assuntos
Tomada de Decisões , Vias Neurais , Lobo Parietal , Sinapses , Cálcio/análise , Cálcio/metabolismo , Tomada de Decisões/fisiologia , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Aprendizagem/fisiologia , Microscopia Eletrônica , Inibição Neural , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Lobo Parietal/ultraestrutura , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Realidade Virtual , Modelos Neurológicos
5.
Nature ; 620(7973): 366-373, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468637

RESUMO

Neurons in the posterior parietal cortex contribute to the execution of goal-directed navigation1 and other decision-making tasks2-4. Although molecular studies have catalogued more than 50 cortical cell types5, it remains unclear what distinct functions they have in this area. Here we identified a molecularly defined subset of somatostatin (Sst) inhibitory neurons that, in the mouse posterior parietal cortex, carry a cell-type-specific error-correction signal for navigation. We obtained repeatable experimental access to these cells using an adeno-associated virus in which gene expression is driven by an enhancer that functions specifically in a subset of Sst cells6. We found that during goal-directed navigation in a virtual environment, this subset of Sst neurons activates in a synchronous pattern that is distinct from the activity of surrounding neurons, including other Sst neurons. Using in vivo two-photon photostimulation and ex vivo paired patch-clamp recordings, we show that nearby cells of this Sst subtype excite each other through gap junctions, revealing a self-excitation circuit motif that contributes to the synchronous activity of this cell type. These cells selectively activate as mice execute course corrections for deviations in their virtual heading during navigation towards a reward location, for both self-induced and experimentally induced deviations. We propose that this subtype of Sst neurons provides a self-reinforcing and cell-type-specific error-correction signal in the posterior parietal cortex that may help with the execution and learning of accurate goal-directed navigation trajectories.


Assuntos
Neurônios , Lobo Parietal , Animais , Camundongos , Aprendizagem , Neurônios/metabolismo , Lobo Parietal/citologia , Lobo Parietal/metabolismo , Objetivos , Somatostatina/metabolismo , Inibição Neural , Navegação Espacial , Técnicas de Patch-Clamp , Junções Comunicantes/metabolismo
6.
Nature ; 609(7926): 327-334, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002569

RESUMO

In the hippocampus, spatial maps are formed by place cells while contextual memories are thought to be encoded as engrams1-6. Engrams are typically identified by expression of the immediate early gene Fos, but little is known about the neural activity patterns that drive, and are shaped by, Fos expression in behaving animals7-10. Thus, it is unclear whether Fos-expressing hippocampal neurons also encode spatial maps and whether Fos expression correlates with and affects specific features of the place code11. Here we measured the activity of CA1 neurons with calcium imaging while monitoring Fos induction in mice performing a hippocampus-dependent spatial learning task in virtual reality. We find that neurons with high Fos induction form ensembles of cells with highly correlated activity, exhibit reliable place fields that evenly tile the environment and have more stable tuning across days than nearby non-Fos-induced cells. Comparing neighbouring cells with and without Fos function using a sparse genetic loss-of-function approach, we find that neurons with disrupted Fos function have less reliable activity, decreased spatial selectivity and lower across-day stability. Our results demonstrate that Fos-induced cells contribute to hippocampal place codes by encoding accurate, stable and spatially uniform maps and that Fos itself has a causal role in shaping these place codes. Fos ensembles may therefore link two key aspects of hippocampal function: engrams for contextual memories and place codes that underlie cognitive maps.


Assuntos
Hipocampo , Proteínas Proto-Oncogênicas c-fos , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Cálcio/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Camundongos , Neurônios/fisiologia , Células de Lugar/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
7.
Nat Rev Neurosci ; 23(9): 551-567, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35732917

RESUMO

The collective activity of a population of neurons, beyond the properties of individual cells, is crucial for many brain functions. A fundamental question is how activity correlations between neurons affect how neural populations process information. Over the past 30 years, major progress has been made on how the levels and structures of correlations shape the encoding of information in population codes. Correlations influence population coding through the organization of pairwise-activity correlations with respect to the similarity of tuning of individual neurons, by their stimulus modulation and by the presence of higher-order correlations. Recent work has shown that correlations also profoundly shape other important functions performed by neural populations, including generating codes across multiple timescales and facilitating information transmission to, and readout by, downstream brain areas to guide behaviour. Here, we review this recent work and discuss how the structures of correlations can have opposite effects on the different functions of neural populations, thus creating trade-offs and constraints for the structure-function relationships of population codes. Further, we present ideas on how to combine large-scale simultaneous recordings of neural populations, computational models, analyses of behaviour, optogenetics and anatomy to unravel how the structures of correlations might be optimized to serve multiple functions.


Assuntos
Modelos Neurológicos , Neurônios , Potenciais de Ação/fisiologia , Encéfalo/fisiologia , Humanos , Neurônios/fisiologia
8.
Nature ; 600(7890): 680-685, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789880

RESUMO

Current models to explain how signals emanating from cutaneous mechanoreceptors generate representations of touch are based on comparisons of the tactile responses of mechanoreceptor subtypes and neurons in somatosensory cortex1-8. Here we used mouse genetic manipulations to investigate the contributions of peripheral mechanoreceptor subtypes to cortical responses to touch. Cortical neurons exhibited remarkably homogeneous and transient responses to skin indentation that resembled rapidly adapting (RA) low-threshold mechanoreceptor (LTMR) responses. Concurrent disruption of signals from both Aß RA-LTMRs and Aß slowly adapting (SA)-LTMRs eliminated cortical responses to light indentation forces. However, disruption of either LTMR subtype alone caused opposite shifts in cortical sensitivity but otherwise largely unaltered tactile responses, indicating that both subtypes contribute to normal cortical responses. Selective optogenetic activation of single action potentials in Aß RA-LTMRs or Aß SA-LTMRs drove low-latency responses in most mechanically sensitive cortical neurons. Similarly, most somatosensory thalamic neurons were also driven by activation of Aß RA-LTMRs or Aß SA-LTMRs. These findings support a model in which signals from physiologically distinct mechanoreceptor subtypes are extensively integrated and transformed within the subcortical somatosensory system to generate cortical representations of touch.


Assuntos
Percepção do Tato , Tato , Animais , Mecanorreceptores/fisiologia , Camundongos , Neurônios , Pele , Tato/fisiologia
9.
Nature ; 590(7844): 115-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33299180

RESUMO

Behavioural experiences activate the FOS transcription factor in sparse populations of neurons that are critical for encoding and recalling specific events1-3. However, there is limited understanding of the mechanisms by which experience drives circuit reorganization to establish a network of Fos-activated cells. It is also not known whether FOS is required in this process beyond serving as a marker of recent neural activity and, if so, which of its many gene targets underlie circuit reorganization. Here we demonstrate that when mice engage in spatial exploration of novel environments, perisomatic inhibition of Fos-activated hippocampal CA1 pyramidal neurons by parvalbumin-expressing interneurons is enhanced, whereas perisomatic inhibition by cholecystokinin-expressing interneurons is weakened. This bidirectional modulation of inhibition is abolished when the function of the FOS transcription factor complex is disrupted. Single-cell RNA-sequencing, ribosome-associated mRNA profiling and chromatin analyses, combined with electrophysiology, reveal that FOS activates the transcription of Scg2, a gene that encodes multiple distinct neuropeptides, to coordinate these changes in inhibition. As parvalbumin- and cholecystokinin-expressing interneurons mediate distinct features of pyramidal cell activity4-6, the SCG2-dependent reorganization of inhibitory synaptic input might be predicted to affect network function in vivo. Consistent with this prediction, hippocampal gamma rhythms and pyramidal cell coupling to theta phase are significantly altered in the absence of Scg2. These findings reveal an instructive role for FOS and SCG2 in establishing a network of Fos-activated neurons via the rewiring of local inhibition to form a selectively modulated state. The opposing plasticity mechanisms acting on distinct inhibitory pathways may support the consolidation of memories over time.


Assuntos
Rede Nervosa/citologia , Rede Nervosa/fisiologia , Inibição Neural , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Colecistocinina/metabolismo , Comportamento Exploratório/fisiologia , Feminino , Ritmo Gama , Interneurônios/metabolismo , Masculino , Consolidação da Memória , Camundongos , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Secretogranina II/genética , Secretogranina II/metabolismo , Navegação Espacial/fisiologia , Ritmo Teta
10.
Nature ; 567(7748): 334-340, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842660

RESUMO

The computations performed by local neural populations, such as a cortical layer, are typically inferred from anatomical connectivity and observations of neural activity. Here we describe a method-influence mapping-that uses single-neuron perturbations to directly measure how cortical neurons reshape sensory representations. In layer 2/3 of the primary visual cortex (V1), we use two-photon optogenetics to trigger action potentials in a targeted neuron and calcium imaging to measure the effect on spiking in neighbouring neurons in awake mice viewing visual stimuli. Excitatory neurons on average suppressed other neurons and had a centre-surround influence profile over anatomical space. A neuron's influence on its neighbour depended on their similarity in activity. Notably, neurons suppressed activity in similarly tuned neurons more than in dissimilarly tuned neurons. In addition, photostimulation reduced the population response, specifically to the targeted neuron's preferred stimulus, by around 2%. Therefore, V1 layer 2/3 performed feature competition, in which a like-suppresses-like motif reduces redundancy in population activity and may assist with inference of the features that underlie sensory input. We anticipate that influence mapping can be extended to investigate computations in other neural populations.


Assuntos
Modelos Neurológicos , Inibição Neural , Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Potenciais de Ação , Animais , Sinalização do Cálcio , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos da radiação , Optogenética , Estimulação Luminosa , Percepção Visual
11.
Nature ; 569(7756): 413-417, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043747

RESUMO

A technology that simultaneously records membrane potential from multiple neurons in behaving animals will have a transformative effect on neuroscience research1,2. Genetically encoded voltage indicators are a promising tool for these purposes; however, these have so far been limited to single-cell recordings with a marginal signal-to-noise ratio in vivo3-5. Here we developed improved near-infrared voltage indicators, high-speed microscopes and targeted gene expression schemes that enabled simultaneous in vivo recordings of supra- and subthreshold voltage dynamics in multiple neurons in the hippocampus of behaving mice. The reporters revealed subcellular details of back-propagating action potentials and correlations in subthreshold voltage between multiple cells. In combination with stimulation using optogenetics, the reporters revealed changes in neuronal excitability that were dependent on the behavioural state, reflecting the interplay of excitatory and inhibitory synaptic inputs. These tools open the possibility for detailed explorations of network dynamics in the context of behaviour. Fig. 1 PHOTOACTIVATED QUASAR3 (PAQUASAR3) REPORTS NEURONAL ACTIVITY IN VIVO.: a, Schematic of the paQuasAr3 construct. b, Photoactivation by blue light enhanced voltage signals excited by red light in cultured neurons that expressed paQuasAr3 (representative example of n = 4 cells). c, Model of the photocycle of paQuasAr3. d, Confocal images of sparsely expressed paQuasAr3 in brain slices. Scale bars, 50 µm. Representative images, experiments were repeated in n = 3 mice. e, Simultaneous fluorescence and patch-clamp recordings from a neuron expressing paQuasAr3 in acute brain slice. Top, magnification of boxed regions. Schematic shows brain slice, patch pipette and microscope objective. f, Simultaneous fluorescence and patch-clamp recordings of inhibitory post synaptic potentials in an L2-3 neuron induced by electrical stimulation of L5-6 in acute slice. g, Normalized change in fluorescence (ΔF/F) and SNR of optically recorded post-synaptic potentials (PSPs) as a function of the amplitude of the post-synaptic potentials. The voltage sensitivity was ΔF/F = 40 ± 1.7% per 100 mV. The SNR was 0.93 ± 0.07 per 1 mV in a 1-kHz bandwidth (n = 42 post-synaptic potentials from 5 cells, data are mean ± s.d.). Schematic shows brain slice, patch pipette, field stimulation electrodes and microscope objective. h, Optical measurements of paQuasAr3 fluorescence in the CA1 region of the hippocampus (top) and glomerular layer of the olfactory bulb (bottom) of anaesthetized mice (representative traces from n = 7 CA1 cells and n = 13 olfactory bulb cells, n = 3 mice). Schematics show microscope objective and the imaged brain region. i, STA fluorescence from 88 spikes in a CA1 oriens neuron. j, Frames from the STA video showing the delay in the back-propagating action potential in the dendrites relative to the soma. k, Sub-Nyquist fitting of the action potential delay and width shows electrical compartmentalization in the dendrites. Experiments in k-m were repeated in n = 2 cells from n = 2 mice.


Assuntos
Potenciais de Ação , Hipocampo/citologia , Hipocampo/fisiologia , Optogenética/métodos , Algoritmos , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bacteriorodopsinas/genética , Bacteriorodopsinas/metabolismo , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Caminhada
12.
Nature ; 548(7665): 92-96, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28723889

RESUMO

The cortex represents information across widely varying timescales. For instance, sensory cortex encodes stimuli that fluctuate over few tens of milliseconds, whereas in association cortex behavioural choices can require the maintenance of information over seconds. However, it remains poorly understood whether diverse timescales result mostly from features intrinsic to individual neurons or from neuronal population activity. This question remains unanswered, because the timescales of coding in populations of neurons have not been studied extensively, and population codes have not been compared systematically across cortical regions. Here we show that population codes can be essential to achieve long coding timescales. Furthermore, we find that the properties of population codes differ between sensory and association cortices. We compared coding for sensory stimuli and behavioural choices in auditory cortex and posterior parietal cortex as mice performed a sound localization task. Auditory stimulus information was stronger in auditory cortex than in posterior parietal cortex, and both regions contained choice information. Although auditory cortex and posterior parietal cortex coded information by tiling in time neurons that were transiently informative for approximately 200 milliseconds, the areas had major differences in functional coupling between neurons, measured as activity correlations that could not be explained by task events. Coupling among posterior parietal cortex neurons was strong and extended over long time lags, whereas coupling among auditory cortex neurons was weak and short-lived. Stronger coupling in posterior parietal cortex led to a population code with long timescales and a representation of choice that remained consistent for approximately 1 second. In contrast, auditory cortex had a code with rapid fluctuations in stimulus and choice information over hundreds of milliseconds. Our results reveal that population codes differ across cortex and that coupling is a variable property of cortical populations that affects the timescale of information coding and the accuracy of behaviour.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Tomada de Decisões , Animais , Córtex Auditivo/citologia , Córtex Auditivo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Fatores de Tempo
13.
Nature ; 484(7392): 62-8, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22419153

RESUMO

The posterior parietal cortex (PPC) has an important role in many cognitive behaviours; however, the neural circuit dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences of neurons were triggered on trials with opposite behavioural choices and defined divergent, choice-specific trajectories through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time points in the task were anatomically intermixed over microcircuit length scales (<100 micrometres). During working memory decision tasks, the PPC may therefore perform computations through sequence-based circuit dynamics, rather than long-lived stable states, implemented using anatomically intermingled microcircuits.


Assuntos
Tomada de Decisões/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Lobo Parietal/fisiologia , Interface Usuário-Computador , Potenciais de Ação/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Lobo Parietal/citologia , Estimulação Luminosa
15.
Nature ; 461(7266): 941-6, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19829374

RESUMO

Hippocampal place cells encode spatial information in rate and temporal codes. To examine the mechanisms underlying hippocampal coding, here we measured the intracellular dynamics of place cells by combining in vivo whole-cell recordings with a virtual-reality system. Head-restrained mice, running on a spherical treadmill, interacted with a computer-generated visual environment to perform spatial behaviours. Robust place-cell activity was present during movement along a virtual linear track. From whole-cell recordings, we identified three subthreshold signatures of place fields: an asymmetric ramp-like depolarization of the baseline membrane potential, an increase in the amplitude of intracellular theta oscillations, and a phase precession of the intracellular theta oscillation relative to the extracellularly recorded theta rhythm. These intracellular dynamics underlie the primary features of place-cell rate and temporal codes. The virtual-reality system developed here will enable new experimental approaches to study the neural circuits underlying navigation.


Assuntos
Hipocampo/citologia , Espaço Intracelular/metabolismo , Neurônios/metabolismo , Percepção Espacial/fisiologia , Interface Usuário-Computador , Animais , Comportamento Animal/fisiologia , Hipocampo/fisiologia , Locomoção/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/metabolismo , Ritmo Teta
16.
Nat Commun ; 15(1): 2456, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503769

RESUMO

The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.


Assuntos
Córtex Visual , Animais , Camundongos , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Neurônios/fisiologia
17.
Nature ; 450(7173): 1195-200, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18097401

RESUMO

Long-term potentiation (LTP) of synaptic transmission underlies aspects of learning and memory. LTP is input-specific at the level of individual synapses, but neural network models predict interactions between plasticity at nearby synapses. Here we show in mouse hippocampal pyramidal cells that LTP at individual synapses reduces the threshold for potentiation at neighbouring synapses. After input-specific LTP induction by two-photon glutamate uncaging or by synaptic stimulation, subthreshold stimuli, which by themselves were too weak to trigger LTP, caused robust LTP and spine enlargement at neighbouring spines. Furthermore, LTP induction broadened the presynaptic-postsynaptic spike interval for spike-timing-dependent LTP within a dendritic neighbourhood. The reduction in the threshold for LTP induction lasted approximately 10 min and spread over approximately 10 microm of dendrite. These local interactions between neighbouring synapses support clustered plasticity models of memory storage and could allow for the binding of behaviourally linked information on the same dendritic branch.


Assuntos
Dendritos/metabolismo , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Células Piramidais/metabolismo , Sinapses/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Camundongos , Modelos Neurológicos
18.
Nat Commun ; 14(1): 2121, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37055431

RESUMO

Decision-making requires flexibility to rapidly switch one's actions in response to sensory stimuli depending on information stored in memory. We identified cortical areas and neural activity patterns underlying this flexibility during virtual navigation, where mice switched navigation toward or away from a visual cue depending on its match to a remembered cue. Optogenetics screening identified V1, posterior parietal cortex (PPC), and retrosplenial cortex (RSC) as necessary for accurate decisions. Calcium imaging revealed neurons that can mediate rapid navigation switches by encoding a mixture of a current and remembered visual cue. These mixed selectivity neurons emerged through task learning and predicted the mouse's choices by forming efficient population codes before correct, but not incorrect, choices. They were distributed across posterior cortex, even V1, and were densest in RSC and sparsest in PPC. We propose flexibility in navigation decisions arises from neurons that mix visual and memory information within a visual-parietal-retrosplenial network.


Assuntos
Aprendizagem , Lobo Parietal , Camundongos , Animais , Lobo Parietal/fisiologia , Neurônios/fisiologia , Giro do Cíngulo
19.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662297

RESUMO

Do cortical neurons that send axonal projections to the same target area form specialized population codes for transmitting information? We used calcium imaging in mouse posterior parietal cortex (PPC), retrograde labeling, and statistical multivariate models to address this question during a delayed match-to-sample task. We found that PPC broadcasts sensory, choice, and locomotion signals widely, but sensory information is enriched in the output to anterior cingulate cortex. Neurons projecting to the same area have elevated pairwise activity correlations. These correlations are structured as information-limiting and information-enhancing interaction networks that collectively enhance information levels. This network structure is unique to sub-populations projecting to the same target and strikingly absent in surrounding neural populations with unidentified projections. Furthermore, this structure is only present when mice make correct, but not incorrect, behavioral choices. Therefore, cortical neurons comprising an output pathway form uniquely structured population codes that enhance information transmission to guide accurate behavior.

20.
bioRxiv ; 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36824774

RESUMO

Characterizing animal behavior requires methods to distill 3D movements from video data. Though keypoint tracking has emerged as a widely used solution to this problem, it only provides a limited view of pose, reducing the body of an animal to a sparse set of experimenter-defined points. To more completely capture 3D pose, recent studies have fit 3D mesh models to subjects in image and video data. However, despite the importance of mice as a model organism in neuroscience research, these methods have not been applied to the 3D reconstruction of mouse behavior. Here, we present ArMo, an articulated mesh model of the laboratory mouse, and demonstrate its application to multi-camera recordings of head-fixed mice running on a spherical treadmill. Using an end-to-end gradient based optimization procedure, we fit the shape and pose of a dense 3D mouse model to data-derived keypoint and point cloud observations. The resulting reconstructions capture the shape of the animal’s surface while compactly summarizing its movements as a time series of 3D skeletal joint angles. ArMo therefore provides a novel alternative to the sparse representations of pose more commonly used in neuroscience research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA