Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Childs Nerv Syst ; 40(3): 673-684, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37812266

RESUMO

PURPOSE: Intraventricular hemorrhage (IVH) of prematurity can lead to hydrocephalus, sometimes necessitating permanent cerebrospinal fluid (CSF) diversion. We sought to characterize the relationship between head circumference (HC) and ventricular size in IVH over time to evaluate the clinical utility of serial HC measurements as a metric in determining the need for CSF diversion. METHODS: We included preterm infants with IVH born between January 2000 and May 2020. Three measures of ventricular size were obtained: ventricular index (VI), Evan's ratio (ER), and frontal occipital head ratio (FOHR). The Pearson correlations (r) between the initial (at birth) paired measurements of HC and ventricular size were reported. Multivariable longitudinal regression models were fit to examine the HC:ventricle size ratio, adjusting for the age of the infant, IVH grade (I/II vs. III/IV), need for CSF diversion, and sex. RESULTS: A total of 639 patients with an average gestational age of 27.5 weeks were included. IVH grade I/II and grade III/IV patients had a positive correlation between initial HC and VI (r = 0.47, p < 0.001 and r = 0.48, p < 0.001, respectively). In our longitudinal models, patients with a low-grade IVH (I/II) had an HC:VI ratio 0.52 higher than those with a high-grade IVH (p-value < 0.001). Patients with low-grade IVH had an HC:ER ratio 12.94 higher than those with high-grade IVH (p-value < 0.001). Patients with low-grade IVH had a HC:FOHR ratio 12.91 higher than those with high-grade IVH (p-value < 0.001). Infants who did not require CSF diversion had an HC:VI ratio 0.47 higher than those who eventually did (p < 0.001). Infants without CSF diversion had an HC:ER ratio 16.53 higher than those who received CSF diversion (p < 0.001). Infants without CSF diversion had an HC:FOHR ratio 15.45 higher than those who received CSF diversion (95% CI (11.34, 19.56), p < 0.001). CONCLUSIONS: There is a significant difference in the ratio of HC:VI, HC:ER, and HC:FOHR size between patients with high-grade IVH and low-grade IVH. Likewise, there is a significant difference in HC:VI, HC:ER, and HC:FOHR between those who did and did not have CSF diversion. The routine assessments of both head circumference and ventricle size by ultrasound are important clinical tools in infants with IVH of prematurity.


Assuntos
Hidrocefalia , Doenças do Prematuro , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Ventrículos Cerebrais/cirurgia , Hidrocefalia/cirurgia , Idade Gestacional , Doenças do Prematuro/cirurgia , Hemorragia Cerebral/cirurgia , Estudos Retrospectivos
2.
Epilepsia ; 64(7): 1910-1924, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150937

RESUMO

OBJECTIVE: Effective surgical treatment of drug-resistant epilepsy depends on accurate localization of the epileptogenic zone (EZ). High-frequency oscillations (HFOs) are potential biomarkers of the EZ. Previous research has shown that HFOs often occur within submillimeter areas of brain tissue and that the coarse spatial sampling of clinical intracranial electrode arrays may limit the accurate capture of HFO activity. In this study, we sought to characterize microscale HFO activity captured on thin, flexible microelectrocorticographic (µECoG) arrays, which provide high spatial resolution over large cortical surface areas. METHODS: We used novel liquid crystal polymer thin-film µECoG arrays (.76-1.72-mm intercontact spacing) to capture HFOs in eight intraoperative recordings from seven patients with epilepsy. We identified ripple (80-250 Hz) and fast ripple (250-600 Hz) HFOs using a common energy thresholding detection algorithm along with two stages of artifact rejection. We visualized microscale subregions of HFO activity using spatial maps of HFO rate, signal-to-noise ratio, and mean peak frequency. We quantified the spatial extent of HFO events by measuring covariance between detected HFOs and surrounding activity. We also compared HFO detection rates on microcontacts to simulated macrocontacts by spatially averaging data. RESULTS: We found visually delineable subregions of elevated HFO activity within each µECoG recording. Forty-seven percent of HFOs occurred on single 200-µm-diameter recording contacts, with minimal high-frequency activity on surrounding contacts. Other HFO events occurred across multiple contacts simultaneously, with covarying activity most often limited to a .95-mm radius. Through spatial averaging, we estimated that macrocontacts with 2-3-mm diameter would only capture 44% of the HFOs detected in our µECoG recordings. SIGNIFICANCE: These results demonstrate that thin-film microcontact surface arrays with both highresolution and large coverage accurately capture microscale HFO activity and may improve the utility of HFOs to localize the EZ for treatment of drug-resistant epilepsy.


Assuntos
Ondas Encefálicas , Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Eletroencefalografia/métodos , Epilepsia/cirurgia , Epilepsia/diagnóstico , Encéfalo , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia
3.
Radiology ; 304(2): 406-416, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35438562

RESUMO

Background Radiogenomics of pediatric medulloblastoma (MB) offers an opportunity for MB risk stratification, which may aid therapeutic decision making, family counseling, and selection of patient groups suitable for targeted genetic analysis. Purpose To develop machine learning strategies that identify the four clinically significant MB molecular subgroups. Materials and Methods In this retrospective study, consecutive pediatric patients with newly diagnosed MB at MRI at 12 international pediatric sites between July 1997 and May 2020 were identified. There were 1800 features extracted from T2- and contrast-enhanced T1-weighted preoperative MRI scans. A two-stage sequential classifier was designed-one that first identifies non-wingless (WNT) and non-sonic hedgehog (SHH) MB and then differentiates therapeutically relevant WNT from SHH. Further, a classifier that distinguishes high-risk group 3 from group 4 MB was developed. An independent, binary subgroup analysis was conducted to uncover radiomics features unique to infantile versus childhood SHH subgroups. The best-performing models from six candidate classifiers were selected, and performance was measured on holdout test sets. CIs were obtained by bootstrapping the test sets for 2000 random samples. Model accuracy score was compared with the no-information rate using the Wald test. Results The study cohort comprised 263 patients (mean age ± SD at diagnosis, 87 months ± 60; 166 boys). A two-stage classifier outperformed a single-stage multiclass classifier. The combined, sequential classifier achieved a microaveraged F1 score of 88% and a binary F1 score of 95% specifically for WNT. A group 3 versus group 4 classifier achieved an area under the receiver operating characteristic curve of 98%. Of the Image Biomarker Standardization Initiative features, texture and first-order intensity features were most contributory across the molecular subgroups. Conclusion An MRI-based machine learning decision path allowed identification of the four clinically relevant molecular pediatric medulloblastoma subgroups. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chaudhary and Bapuraj in this issue.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Adolescente , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/genética , Criança , Pré-Escolar , Feminino , Proteínas Hedgehog/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/genética , Estudos Retrospectivos
4.
Nature ; 538(7623): 104-108, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27680697

RESUMO

The Rho GTPase proteins Rac1, RhoA and Cdc42 have a central role in regulating the actin cytoskeleton in dendritic spines, thereby exerting control over the structural and functional plasticity of spines and, ultimately, learning and memory. Although previous work has shown that precise spatiotemporal coordination of these GTPases is crucial for some forms of cell morphogenesis, the nature of such coordination during structural spine plasticity is unclear. Here we describe a three-molecule model of structural long-term potentiation (sLTP) of murine dendritic spines, implicating the localized, coincident activation of Rac1, RhoA and Cdc42 as a causal signal of sLTP. This model posits that complete tripartite signal overlap in spines confers sLTP, but that partial overlap primes spines for structural plasticity. By monitoring the spatiotemporal activation patterns of these GTPases during sLTP, we find that such spatiotemporal signal complementation simultaneously explains three integral features of plasticity: the facilitation of plasticity by brain-derived neurotrophic factor (BDNF), the postsynaptic source of which activates Cdc42 and Rac1, but not RhoA; heterosynaptic facilitation of sLTP, which is conveyed by diffusive Rac1 and RhoA activity; and input specificity, which is afforded by spine-restricted Cdc42 activity. Thus, we present a form of biochemical computation in dendrites involving the controlled complementation of three molecules that simultaneously ensures signal specificity and primes the system for plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Potenciação de Longa Duração , Neuropeptídeos/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Ativação Enzimática , Feminino , Humanos , Masculino , Camundongos , Inibição Neural , Neuropeptídeos/antagonistas & inibidores , Densidade Pós-Sináptica/metabolismo , Ratos , Transdução de Sinais , Análise Espaço-Temporal , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP
5.
Nature ; 538(7623): 99-103, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27680698

RESUMO

Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are crucial for many forms of neuronal plasticity, including structural long-term potentiation (sLTP), which is a correlate of an animal's learning. However, it is unknown whether BDNF release and TrkB activation occur during sLTP, and if so, when and where. Here, using a fluorescence resonance energy transfer-based sensor for TrkB and two-photon fluorescence lifetime imaging microscopy, we monitor TrkB activity in single dendritic spines of CA1 pyramidal neurons in cultured murine hippocampal slices. In response to sLTP induction, we find fast (onset < 1 min) and sustained (>20 min) activation of TrkB in the stimulated spine that depends on NMDAR (N-methyl-d-aspartate receptor) and CaMKII signalling and on postsynaptically synthesized BDNF. We confirm the presence of postsynaptic BDNF using electron microscopy to localize endogenous BDNF to dendrites and spines of hippocampal CA1 pyramidal neurons. Consistent with these findings, we also show rapid, glutamate-uncaging-evoked, time-locked BDNF release from single dendritic spines using BDNF fused to superecliptic pHluorin. We demonstrate that this postsynaptic BDNF-TrkB signalling pathway is necessary for both structural and functional LTP. Together, these findings reveal a spine-autonomous, autocrine signalling mechanism involving NMDAR-CaMKII-dependent BDNF release from stimulated dendritic spines and subsequent TrkB activation on these same spines that is crucial for structural and functional plasticity.


Assuntos
Comunicação Autócrina , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/ultraestrutura , Ativação Enzimática , Feminino , Transferência Ressonante de Energia de Fluorescência , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde , Células HeLa , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Microscopia de Fluorescência por Excitação Multifotônica , Densidade Pós-Sináptica/metabolismo , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Técnicas de Cultura de Tecidos
6.
Ann Neurol ; 86(6): 939-950, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31525273

RESUMO

OBJECTIVE: Temporal lobe epilepsy (TLE) is a devastating disease in which seizures persist in 35% of patients despite optimal use of antiseizure drugs. Clinical and preclinical evidence implicates seizures themselves as one factor promoting epilepsy progression. What is the molecular consequence of a seizure that promotes progression? Evidence from preclinical studies led us to hypothesize that activation of tropomyosin kinase B (TrkB)-phospholipase-C-gamma-1 (PLCγ1) signaling induced by a seizure promotes epileptogenesis. METHODS: To examine the effects of inhibiting TrkB signaling on epileptogenesis following an isolated seizure, we implemented a modified kindling model in which we induced a seizure through amygdala stimulation and then used either a chemical-genetic strategy or pharmacologic methods to disrupt signaling for 2 days following the seizure. The severity of a subsequent seizure was assessed by behavioral and electrographic measures. RESULTS: Transient inhibition of TrkB-PLCγ1 signaling initiated after an isolated seizure limited progression of epileptogenesis, evidenced by the reduced severity and duration of subsequent seizures. Unexpectedly, transient inhibition of TrkB-PLCγ1 signaling initiated following a seizure also reverted a subset of animals to an earlier state of epileptogenesis. Remarkably, inhibition of TrkB-PLCγ1 signaling in the absence of a recent seizure did not reduce severity of subsequent seizures. INTERPRETATION: These results suggest a novel strategy for limiting progression or potentially ameliorating severity of TLE whereby transient inhibition of TrkB-PLCγ1 signaling is initiated following a seizure. ANN NEUROL 2019;86:939-950.


Assuntos
Excitação Neurológica/fisiologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Convulsões/tratamento farmacológico , Convulsões/enzimologia , Transdução de Sinais/fisiologia , Animais , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Feminino , Excitação Neurológica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
7.
Neurosurg Focus ; 48(4): E18, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32234982

RESUMO

Excitatory-inhibitory imbalance is central to epilepsy pathophysiology. Current surgical therapies for epilepsy, such as brain resection, laser ablation, and neurostimulation, target epileptic networks on macroscopic scales, without directly correcting the circuit-level aberrations responsible for seizures. The transplantation of inhibitory cortical interneurons represents a novel neurobiological method for modifying recipient neural circuits in a physiologically corrective manner. Transplanted immature interneurons have been found to disperse in the recipient brain parenchyma, where they develop elaborate structural morphologies, express histochemical markers of mature interneurons, and form functional inhibitory synapses onto recipient neurons. Transplanted interneurons also augment synaptic inhibition and alter recipient neural network synchrony, two physiological processes disrupted in various epilepsies. In rodent models of epilepsy, interneuron transplantation corrects recipient seizure phenotypes and associated behavioral abnormalities. As such, interneuron transplantation may represent a novel neurobiological approach to the surgical treatment of human epilepsy. Here, the authors describe the preclinical basis for applying interneuron transplantation to human epilepsy, discuss its potential clinical applications, and consider the translational hurdles to its development as a surgical therapy.


Assuntos
Epilepsia/cirurgia , Hipocampo/cirurgia , Interneurônios/transplante , Convulsões/cirurgia , Encéfalo/cirurgia , Humanos , Interneurônios/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Estudos Prospectivos
8.
Childs Nerv Syst ; 34(3): 449-455, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29151166

RESUMO

PURPOSE: Diffuse intrinsic pontine glioma (DIPG) remains the main cause of death in children with brain tumors. Given the inefficacy of numerous peripherally delivered agents to treat DIPG, convection enhanced delivery (CED) of therapeutic agents is a promising treatment modality. The purpose of this study was to determine which MR imaging type provides the best discrimination of intratumoral heterogeneity to guide future stereotactic implantation of CED catheters into the most cellular tumor regions. METHODS: Patients ages 18 years or younger with a diagnosis of DIPG from 2000 to 2015 were included. Radiographic heterogeneity index (HI) of the tumor was calculated by measuring the standard deviation of signal intensity of the tumor (SDTumor) normalized to the genu of the corpus callosum (SDCorpus Callosum). Four MR image types (T2-weighted, contrast-enhanced T1-weighted, FLAIR, and ADC) were analyzed at several time points both before and after radiotherapy and chemotherapy. HI values across these MR image types were compared and correlated with patient survival. RESULTS: MR images from 18 patients with DIPG were evaluated. The mean survival ± standard deviation was 13.8 ± 13.7 months. T2-weighted images had the highest HI (mean ± SD, 5.1 ± 2.5) followed by contrast-enhanced T1-weighted images (3.7 ± 1.5), FLAIR images (3.0 ± 1.1), and ADC maps (1.6 ± 0.4). ANOVA demonstrated that HI values were significantly higher for T2-weighted images than FLAIR (p < 0.01) and ADC (p < 0.0001). Following radiotherapy, T2-weighted and contrast-enhanced T1-weighted image HI values increased, while FLAIR and ADC HI values decreased. Univariate and multivariate analyses did not reveal a relationship between HI values and patient survival (p > 0.05). CONCLUSIONS: For children with DIPG, T2-weighted MRI demonstrates the greatest signal intensity variance suggesting tumor heterogeneity. Within this heterogeneity, T2-weighted signal hypointensity is known to correlate with increased cellularity and thus may represent a putative target for CED catheter placement in future clinical trials.


Assuntos
Neoplasias do Tronco Encefálico/diagnóstico por imagem , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Adolescente , Neoplasias do Tronco Encefálico/mortalidade , Neoplasias do Tronco Encefálico/terapia , Criança , Pré-Escolar , Feminino , Glioma/mortalidade , Glioma/terapia , Humanos , Aumento da Imagem/métodos , Aumento da Imagem/normas , Imageamento por Ressonância Magnética/mortalidade , Masculino , Taxa de Sobrevida/tendências
9.
J Craniofac Surg ; 29(7): 1767-1771, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30059426

RESUMO

BACKGROUND: Premature fusion of the cranial sutures can lead to significant neurocognitive, developmental, and esthetic consequences, especially if not corrected within the first year of life. This study aimed to identify the drivers of delayed cranial vault reconstruction (CVR) and its impact on complication and 30-day readmission rates among craniosynostosis patients. METHODS: The medical records of all children who underwent CVR for craniosynostosis between 2005 and 2017 at an academic institution were retrospectively reviewed. A delay in operation was defined by surgery performed >12 months of age. Patient demographics, comorbidities, perioperative complication rates, and 30-day readmission rates were collected. RESULTS: A total of 96 patients underwent primary CVR, with 79 (82.3%) patients undergoing nondelayed surgery and 17 (17.7%) patients undergoing surgery >12 months of age. Children undergoing delayed surgery were significantly more likely to be non-White (P < 0.0001), have Medicaid insurance (P = 0.023), and have a non-English primary language (P < 0.005). There was increased incidence of developmental disability identified at first consult (no-delay: 3.9% vs delay: 41.2%, P < 0.0001) and increased intracranial pressure (no-delay: 6.3% vs delay: 29.4%, P < 0.005) among children undergoing delayed surgery. The delayed cohort had a significantly higher unplanned 30-day readmission rate (no-delay: 0.0% vs delay: 5.9%, P = 0.03). CONCLUSION: Our study suggests that craniosynostosis patients who are non-White, have a non-English primary language, and have Medicaid insurance are at risk for delayed primary surgery, which may lead to increased 30-day readmission. Interventions are necessary to reduce craniosynostosis patients' barriers to care to minimize the sequelae associated with delayed surgery.


Assuntos
Craniossinostoses/cirurgia , Deficiências do Desenvolvimento/epidemiologia , Readmissão do Paciente , Procedimentos de Cirurgia Plástica , Complicações Pós-Operatórias/etiologia , Tempo para o Tratamento , Pré-Escolar , Craniossinostoses/complicações , Feminino , Disparidades em Assistência à Saúde , Humanos , Incidência , Lactente , Hipertensão Intracraniana/etiologia , Idioma , Masculino , Grupos Raciais , Procedimentos de Cirurgia Plástica/efeitos adversos , Estudos Retrospectivos , Fatores de Risco , Crânio/cirurgia , Fatores Socioeconômicos
10.
Epilepsia ; 58(12): 2133-2142, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28994113

RESUMO

OBJECTIVE: Medically refractory epilepsy is a debilitating disorder that is particularly challenging to treat in patients who have already failed a surgical resection. Evidence regarding outcomes of further epilepsy surgery is limited to small case series and reviews. Therefore, our group performed the first quantitative meta-analysis of the literature from the past 30 years to assess for rates and predictors of successful reoperations. METHODS: A PubMed search was conducted for studies reporting outcomes of repeat epilepsy surgery. Studies were excluded if they reported fewer than five eligible patients or had average follow-ups < 1 year, and patients were excluded from analysis if they received a nonresective intervention. Outcomes were stratified by each variable of interest, and quantitative meta-analysis was performed to generate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: Seven hundred eighty-two patients who received repeat resective epilepsy surgery from 36 studies were included. Engel I outcome was observed in 47% (n = 369) of patients. Significant predictors of seizure freedom included congruent over noncongruent electrophysiology data (OR = 3.6, 95% CI = 1.6-8.2), lesional over nonlesional epilepsy (OR = 3.2, 95% CI = 1.9-5.3), and surgical limitations over disease-related factors associated with failure of the first surgery (OR = 2.6, 95% CI = 1.3-5.3). Among patients with at least one of these predictors, seizure freedom was achieved in 58%. Conversely, the use of invasive monitoring was associated with worse outcome (OR = 0.4, 95% CI = 0.2-0.9). Temporal lobe over extratemporal/multilobe resection (OR = 1.5, 95% CI = 0.8-3.0) and abnormal over normal preoperative magnetic resonance imaging (OR = 1.9, 95% CI = 0.6-5.4) showed nonsignificant trends toward seizure freedom. SIGNIFICANCE: This analysis supports considering further resection in patients with intractable epilepsy who continue to have debilitating seizures after an initial surgery, especially in the context of factors predictive of a favorable outcome.


Assuntos
Epilepsia Resistente a Medicamentos/cirurgia , Reoperação , Eletroencefalografia , Humanos , Resultado do Tratamento
11.
Epilepsy Behav ; 66: 4-9, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974275

RESUMO

OBJECTIVE: Drug-resistant epilepsy is a devastating disorder associated with diminished quality of life (QOL). Surgical resection leads to seizure freedom and improved QOL in many epilepsy patients, but not all individuals are candidates for resection. In these cases, neuromodulation-based therapies such as vagus nerve stimulation (VNS) are often used, but most VNS studies focus exclusively on reduction of seizure frequency. QOL changes and predictors with VNS remain poorly understood. METHOD: Using the VNS Therapy Patient Outcome Registry, we examined 7 metrics related to QOL after VNS for epilepsy in over 5000 patients (including over 3000 with ≥12months follow-up), as subjectively assessed by treating physicians. Trends and predictors of QOL changes were examined and related to post-operative seizure outcome and likelihood of VNS generator replacement. RESULTS: After VNS therapy, physicians reported patient improvement in alertness (58-63%, range over follow-up period), post-ictal state (55-62%), cluster seizures (48-56%), mood change (43-49%), verbal communication (38-45%), school/professional achievements (29-39%), and memory (29-38%). Predictors of net QOL improvement included shorter time to implant (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.1-1.6), generalized seizure type (OR, 1.2; 95% CI, 1.0-1.4), female gender (OR, 1.2; 95% CI, 1.0-1.4), and Caucasian ethnicity (OR, 1.3; 95% CI, 1.0-1.5). No significant trends were observed over time. Patients with net QOL improvement were more likely to have favorable seizure outcomes (chi square [χ2]=148.1, p<0.001) and more likely to undergo VNS generator replacement (χ2=68.9, p<0.001) than those with worsened/unchanged QOL. SIGNIFICANCE: VNS for drug-resistant epilepsy is associated with improvement on various QOL metrics subjectively rated by physicians. QOL improvement is associated with favorable seizure outcome and a higher likelihood of generator replacement, suggesting satisfaction with therapy. It is important to consider QOL metrics in neuromodulation for epilepsy, given the deleterious effects of seizures on patient QOL.


Assuntos
Epilepsia Resistente a Medicamentos/terapia , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Qualidade de Vida , Sistema de Registros/estatística & dados numéricos , Estimulação do Nervo Vago/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Adv Exp Med Biol ; 813: 243-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25012381

RESUMO

Treatment of the epilepsies have benefitted immensely from study of animal models, most notably in the development of diverse anti-seizure medications in current clinical use. However, available drugs provide only symptomatic relief from seizures and are often ineffective. As a result, a critical need remains for developing improved symptomatic or disease-modifying therapies - or ideally, preventive therapies. Animal models will undoubtedly play a central role in such efforts. To ensure success moving forward, a critical question arises, namely "How does one make laboratory models relevant to our clinical understanding and treatment?" Our answer to this question: It all begins with a detailed understanding of the clinical phenotype one seeks to model. To make our case, we point to two examples - Fragile X syndrome and status epilepticus-induced mesial temporal lobe epilepsy - and examine how development of animal models for these distinct syndromes is based upon observations by astute clinicians and systematic study of the disorder. We conclude that the continuous and effective interaction of skilled clinicians and bench scientists is critical to the optimal design and study of animal models to facilitate insight into the nature of human disorders and enhance likelihood of improved therapies.


Assuntos
Epilepsia/fisiopatologia , Modelos Animais , Animais , Epilepsia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Camundongos , Camundongos Knockout
13.
J Neurosurg Case Lessons ; 7(24)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857545

RESUMO

BACKGROUND: Essential tremor (ET) is one of the most common movement disorders worldwide. In medically refractory ET, deep brain stimulation (DBS) of the ventral intermediate nucleus of the thalamus is the current standard of care. However, DBS carries an inherent 2% to 3% risk of hemorrhage, a risk that can be much higher in patients with concomitant coagulopathy. Magnetic resonance imaging-guided focused ultrasound (MRgFUS) thalamotomy is a surgical alternative that is highly effective in treating ET, with no reports of intracranial hemorrhage to date. OBSERVATIONS: This is the first documented case of successful MRgFUS thalamotomy in a patient with von Willebrand disease (VWD). A 60-year-old left-handed male had medically refractory ET, VWD type 2B, and a family history of clinically significant hemorrhage after DBS. He underwent right-sided MRgFUS thalamotomy and received a perioperative course of VONVENDI (recombinant von Willebrand factor) to ensure appropriate hemostasis. Postprocedure imaging confirmed a focal lesion in the right thalamus without evidence of hemorrhage. The patient reported 90% improvement of his left-hand tremor and significant improvement in his quality of life without obvious side effects. LESSONS: MRgFUS thalamotomy with peri- and postoperative hematological management is a promising alternative to DBS for patients with underlying coagulopathies.

14.
J Neurosurg ; : 1-5, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38626478

RESUMO

OBJECTIVE: The aim of this study was to determine whether a flipped classroom curriculum coupled with case-based learning would improve residents' perceptions of the learning environment, improve education outcomes, and increase faculty engagement. Research suggests that active learning yields better educational results compared with passive learning. However, faculty are more comfortable providing lectures that require only passive participation from learners. METHODS: A council was created to identify issues with the current format of the resident didactic curriculum and to redesign the neurosurgical curriculum and conference per Accreditation Council for Graduate Medical Education (ACGME) requirements. Trends from the authors' 2022 and 2023 ACGME Resident Surveys were tracked to assess changes in the organizational learning environment. Surveys of resident participants were conducted to assess learner satisfaction. RESULTS: Between July 2022 and June 2023, the authors gathered 127 survey responses from neurosurgical residents. The majority of respondents, comprising 50.4% (n = 64), were postgraduate year (PGY)-4 and PGY-5 residents. Sixty-six percent (n = 84) reported that the new format ranked within the top third of sessions they had experienced. On analysis of trends from these 2022 and 2023 ACGME Resident Surveys, the authors observed a positive trajectory in various key components. Notably, there was an upward trend in achieving an appropriate balance between service and education, in the availability of protected time for structured learning, faculty engagement and interest in education, and amount of clinical and didactic teaching. CONCLUSIONS: The results of this study suggest that this innovative educational model can have a positive impact on residents' perceptions of the learning environment, their educational outcomes, and faculty engagement. As residency education continues to evolve, the flipped classroom model offers an exciting avenue for enhancing the quality of residency education.

15.
Development ; 137(18): 3001-11, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20702561

RESUMO

During heart development, a subpopulation of cells in the heart field maintains cardiac potential over several days of development and forms the myocardium and smooth muscle of the arterial pole. Using clonal and explant culture experiments, we show that these cells are a stem cell population that can differentiate into myocardium, smooth muscle and endothelial cells. The multipotent stem cells proliferate or differentiate into different cardiovascular cell fates through activation or inhibition of FGF and BMP signaling pathways. BMP promoted myocardial differentiation but not proliferation. FGF signaling promoted proliferation and induced smooth muscle differentiation, but inhibited myocardial differentiation. Blocking the Ras/Erk intracellular pathway promoted myocardial differentiation, while the PLCgamma and PI3K pathways regulated proliferation. In vivo, inhibition of both pathways resulted in predictable arterial pole defects. These studies suggest that myocardial differentiation of arterial pole progenitors requires BMP signaling combined with downregulation of the FGF/Ras/Erk pathway. The FGF pathway maintains the pool of proliferating stem cells and later promotes smooth muscle differentiation.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Proliferação de Células , Fator 8 de Crescimento de Fibroblasto/metabolismo , Sistema de Sinalização das MAP Quinases , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Artérias/citologia , Artérias/crescimento & desenvolvimento , Artérias/metabolismo , Padronização Corporal , Linhagem da Célula , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Músculo Liso/citologia , Músculo Liso/embriologia , Músculo Liso/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Codorniz , Técnicas de Cultura de Tecidos
16.
Nat Commun ; 14(1): 6938, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932250

RESUMO

Patients suffering from debilitating neurodegenerative diseases often lose the ability to communicate, detrimentally affecting their quality of life. One solution to restore communication is to decode signals directly from the brain to enable neural speech prostheses. However, decoding has been limited by coarse neural recordings which inadequately capture the rich spatio-temporal structure of human brain signals. To resolve this limitation, we performed high-resolution, micro-electrocorticographic (µECoG) neural recordings during intra-operative speech production. We obtained neural signals with 57× higher spatial resolution and 48% higher signal-to-noise ratio compared to macro-ECoG and SEEG. This increased signal quality improved decoding by 35% compared to standard intracranial signals. Accurate decoding was dependent on the high-spatial resolution of the neural interface. Non-linear decoding models designed to utilize enhanced spatio-temporal neural information produced better results than linear techniques. We show that high-density µECoG can enable high-quality speech decoding for future neural speech prostheses.


Assuntos
Interfaces Cérebro-Computador , Fala , Humanos , Qualidade de Vida , Eletrocorticografia/métodos , Comunicação , Encéfalo
17.
J Neurosurg Pediatr ; 28(5): 533-543, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388710

RESUMO

OBJECTIVE: Postoperative hydrocephalus occurs in one-third of children after posterior fossa tumor resection. Although models to predict the need for CSF diversion after resection exist for preoperative variables, it is unknown which postoperative variables predict the need for CSF diversion. In this study, the authors sought to determine the clinical and radiographic predictors for CSF diversion in children following posterior fossa tumor resection. METHODS: This was a retrospective cohort study involving patients ≤ 18 years of age who underwent resection of a primary posterior fossa tumor between 2000 and 2018. The primary outcome was the need for CSF diversion 6 months after surgery. Candidate predictors for CSF diversion including age, race, sex, frontal occipital horn ratio (FOHR), tumor type, tumor volume and location, transependymal edema, papilledema, presence of postoperative intraventricular blood, and residual tumor were evaluated using a best subset selection method with logistic regression. RESULTS: Of the 63 included patients, 26 (41.3%) had CSF diversion at 6 months. Patients who required CSF diversion had a higher median FOHR (0.5 vs 0.4) and a higher percentage of postoperative intraventricular blood (30.8% vs 2.7%) compared with those who did not. A 0.1-unit increase in FOHR or intraventricular blood was associated with increased odds of CSF diversion (OR 2.9 [95% CI 1.3-7.8], p = 0.02 and OR 20.2 [95% CI 2.9-423.1], p = 0.01, respectively) with an overfitting-corrected concordance index of 0.68 (95% CI 0.56-0.80). CONCLUSIONS: The preoperative FOHR and postoperative intraventricular blood were significant predictors of the need for permanent CSF diversion within 6 months after posterior fossa tumor resection in children.


Assuntos
Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/diagnóstico , Neoplasias Infratentoriais/cirurgia , Criança , Pré-Escolar , Feminino , Humanos , Hidrocefalia/complicações , Neoplasias Infratentoriais/complicações , Ventrículos Laterais/irrigação sanguínea , Masculino , Complicações Pós-Operatórias/cirurgia , Estudos Retrospectivos , Terceiro Ventrículo/irrigação sanguínea , Resultado do Tratamento
18.
Neurosurgery ; 89(5): 892-900, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34392363

RESUMO

BACKGROUND: Clinicians and machine classifiers reliably diagnose pilocytic astrocytoma (PA) on magnetic resonance imaging (MRI) but less accurately distinguish medulloblastoma (MB) from ependymoma (EP). One strategy is to first rule out the most identifiable diagnosis. OBJECTIVE: To hypothesize a sequential machine-learning classifier could improve diagnostic performance by mimicking a clinician's strategy of excluding PA before distinguishing MB from EP. METHODS: We extracted 1800 total Image Biomarker Standardization Initiative (IBSI)-based features from T2- and gadolinium-enhanced T1-weighted images in a multinational cohort of 274 MB, 156 PA, and 97 EP. We designed a 2-step sequential classifier - first ruling out PA, and next distinguishing MB from EP. For each step, we selected the best performing model from 6-candidate classifier using a reduced feature set, and measured performance on a holdout test set with the microaveraged F1 score. RESULTS: Optimal diagnostic performance was achieved using 2 decision steps, each with its own distinct imaging features and classifier method. A 3-way logistic regression classifier first distinguished PA from non-PA, with T2 uniformity and T1 contrast as the most relevant IBSI features (F1 score 0.8809). A 2-way neural net classifier next distinguished MB from EP, with T2 sphericity and T1 flatness as most relevant (F1 score 0.9189). The combined, sequential classifier was with F1 score 0.9179. CONCLUSION: An MRI-based sequential machine-learning classifiers offer high-performance prediction of pediatric posterior fossa tumors across a large, multinational cohort. Optimization of this model with demographic, clinical, imaging, and molecular predictors could provide significant advantages for family counseling and surgical planning.


Assuntos
Neoplasias Cerebelares , Ependimoma , Neoplasias Infratentoriais , Meduloblastoma , Criança , Humanos , Neoplasias Infratentoriais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Meduloblastoma/diagnóstico por imagem , Estudos Retrospectivos
19.
Handb Clin Neurol ; 170: 187-200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32586490

RESUMO

More than one-third of patients with meningiomas will experience seizures at some point in their disease. Despite this, meningioma-associated epilepsy remains significantly understudied, as most investigations focus on tumor progression, extent of resection, and survival. Due to the impact of epilepsy on the patient's quality of life, identifying predictors of preoperative seizures and postoperative seizure freedom is critical. In this chapter, we review previously reported rates and predictors of seizures in meningioma and discuss surgical and medical treatment options. Preoperative epilepsy occurs in approximately 30% of meningioma patients with peritumoral edema on neuroimaging being one of the most significant predictor of seizures. Other associated factors include age <18, male gender, the absence of headache, and non-skull base tumor location. Following tumor resection, approximately 70% of individuals with preoperative epilepsy achieve seizure freedom. Variables associated with persistent seizures include a history of preoperative epilepsy, peritumoral edema, skull base tumor location, tumor progression, and epileptiform discharges on postoperative electroencephalogram. In addition, after surgery, approximately 10% of meningioma patients without preoperative epilepsy experience new seizures. Variables associated with new postoperative seizures include tumor progression, prior radiation exposure, and gross total tumor resection. Both pre- and postoperative meningioma-related seizures are often responsive to antiepileptic drugs (AEDs), although AED prophylaxis in the absence of seizures is not recommended. AED selection is based on current guidelines for treating focal seizures with additional considerations including efficacy in tumor-related epilepsy, toxicities, and potential drug-drug interactions. Continued investigation into medical and surgical strategies for preventing and alleviating epilepsy in meningioma is warranted.


Assuntos
Anticonvulsivantes/uso terapêutico , Neoplasias Meníngeas/complicações , Meningioma/complicações , Convulsões/etiologia , Humanos , Neoplasias Meníngeas/cirurgia , Meningioma/cirurgia , Procedimentos Neurocirúrgicos , Convulsões/tratamento farmacológico , Convulsões/cirurgia
20.
Neuropharmacology ; 167: 107734, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377199

RESUMO

Traumatic brain injury (TBI) and status epilepticus (SE) have both been linked to development of human epilepsy. Although distinct etiologies, current research has suggested the convergence of molecular mechanisms underlying epileptogenesis following these insults. One such mechanism involves the neurotrophin brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin related kinase B (TrkB). In this review, we focus on currently available data regarding the pathophysiologic role of BDNF/TrkB signaling in epilepsy development. We specifically examine the axonal injury and SE epilepsy models, two animal models that recapitulate many aspects of TBI- and SE-induced epilepsy in humans respectively. Thereafter, we discuss aspiring strategies for targeting BDNF/TrkB signaling so as to prevent epilepsy following an insult or suppress its expression once developed. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.


Assuntos
Anticonvulsivantes/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptor trkB/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Receptor trkB/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA