Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(20): e2117440119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533277

RESUMO

Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks' horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial "cryptic" lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.


Assuntos
Tubarões , Animais , Espécies em Perigo de Extinção , Plâncton , Navios
2.
Environ Toxicol ; 31(12): 1922-1934, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26450347

RESUMO

Bisphenol A (BPA), an estrogenic and endocrine disrupting agent, is widely used in manufacturing of polycarbonate plastics and epoxy resins. BPA and other endocrine disrupting chemicals (EDCs) act via multiple mechanisms including interference with mitochondrial functions. Mitochondria are the hub of cellular energy pool and hence are the target of many EDCs. We studied perturbation of activities of mitochondrial enzymes by BPA and its possible role in hepatotoxicity in Wistar rats. Rats were exposed to BPA (150 mg/kg, 250 mg/kg, 500 mg/kg per os, for 14 days) and activities of enzymes of mitochondrial electron transport chain (ETC) were measured. Besides, other biochemical parameters such as superoxide generation, protein oxidation, and lipid peroxidation (LPO) were also measured. Our results indicated a significant decrease in the activities of enzymes of mitochondrial ETC complexes, i.e., complex I, II, III, IV, and V along with significant increase in LPO and protein oxidation. Additionally, a significant increase in mitochondrial superoxide generation was also observed. All these findings could be attributed to enhanced oxidative stress, decrease in reduced glutathione level, and decrease in the activity of superoxide dismutase in rat liver mitochondria isolated from BPA-treated rats. BPA treatment also caused a significant increase in serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase indicating its potential hepatotoxicity. Furthermore, histopathological findings revealed marked edema formation, hepatocellular degeneration, and necrosis of liver tissue in BPA-exposed rats. In conclusion, this study provides an evidence of impaired mitochondrial bioenergetics and liver toxicity after high-dose BPA exposure in rats. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1922-1934, 2016.


Assuntos
Compostos Benzidrílicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Disruptores Endócrinos/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Fenóis/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Complexo I de Transporte de Elétrons/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo , Ratos Wistar , Superóxido Dismutase/metabolismo
3.
R Soc Open Sci ; 11(4): 230895, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601035

RESUMO

The reef manta ray Mobula alfredi is present throughout most island groups that form the Raja Ampat archipelago, Indonesia. The species is protected regionally and nationally and is currently managed as a single homogeneous population within the 6.7 million ha archipelago. However, scientific evidence is currently lacking regarding the spatial connectivity and population structure of M. alfredi within this archipelago. Using network analysis and an array of 34 acoustic receivers deployed throughout Raja Ampat between February 2016 and September 2021, we examined the movements of 72 subadult and adult M. alfredi tagged in seven regions of Raja Ampat. A total of 1094 M. alfredi movements were recorded and were primarily concentrated between nearby receiver stations, highlighting frequent local movements within, and limited long-distance movements between regional acoustic receiver arrays. Network analysis revealed highly connected nodes acting as hubs important for M. alfredi movements. A community detection algorithm further indicated clusters within the network. Our results suggest the existence of a metapopulation comprising three demographically and geographically distinct subpopulations within the archipelago. They also reveal the importance of Eagle Rock as a critical node in the M. alfredi movement network, justifying the urgent inclusion of this site within the Raja Ampat marine protected area network.

4.
Sci Total Environ ; 934: 172776, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697520

RESUMO

The expansion of the world's merchant fleet poses a great threat to the ocean's biodiversity. Collisions between ships and marine megafauna can have population-level consequences for vulnerable species. The Endangered whale shark (Rhincodon typus) shares a circumglobal distribution with this expanding fleet and tracking of movement pathways has shown that large vessel collisions pose a major threat to the species. However, it is not yet known whether they are also at risk within aggregation sites, where up to 400 individuals can gather to feed on seasonal bursts of planktonic productivity. These "constellation" sites are of significant ecological, socio-economic and cultural value. Here, through expert elicitation, we gathered information from most known constellation sites for this species across the world (>50 constellations and >13,000 individual whale sharks). We defined the spatial boundaries of these sites and their overlap with shipping traffic. Sites were then ranked based on relative levels of potential collision danger posed to whale sharks in the area. Our results showed that researchers and resource managers may underestimate the threat posed by large ship collisions due to a lack of direct evidence, such as injuries or witness accounts, which are available for other, sub-lethal threat categories. We found that constellations in the Arabian Sea and adjacent waters, the Gulf of Mexico, the Gulf of California, and Southeast and East Asia, had the greatest level of collision threat. We also identified 39 sites where peaks in shipping activity coincided with peak seasonal occurrences of whale sharks, sometimes across several months. Simulated collision mitigation options estimated potentially minimal impact to industry, as most whale shark core habitat areas were small. Given the threat posed by vessel collisions, a coordinated, multi-national approach to mitigation is needed within priority whale shark habitats to ensure collision protection for the species.


Assuntos
Conservação dos Recursos Naturais , Tubarões , Navios , Animais , Tubarões/fisiologia , Espécies em Perigo de Extinção , Monitoramento Ambiental
5.
Ann Indian Acad Neurol ; 25(4): 669-675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211148

RESUMO

Background: Migraine may be an important factor for paresthesia in the limbs, especially in the upper limbs. In several patients, paresthesia is responsible for a low quality of life. Treatment with the serotonin agonist may be a triggering factor for paresthesia in certain patients. Various serotonin receptor agonists are available for migraine treatment. We performed a meta-analysis of updated clinical trials of the serotonin agonist to figure out the risk of paresthesia. Methods: PubMed, Embase, and Cochrane Library databases were searched for clinical trials that evaluated the serotonin agonist for migraine treatment versus placebo. The main outcomes were to perform dose-response model-based network meta-analysis of different serotonin agonists and to compute the relative risk for paresthesia. In addition, probability of paresthesia among various treatments was estimated by the Surface Under the Cumulative Ranking (SUCRA) method. The R 4.30 and Rev Man 5.3 softwares were used to perform meta-analysis. Results: A total of 30 placebo-controlled clinical trials (29,154 subjects) were included in the study to perform dose-response model-based network meta-analysis to explore the risk of paresthesia with different serotonin agonists versus placebo. The drugs Topiramate 200 mg, Lasmiditan 400 mg, and Zolmitriptan 10 mg showed higher relative risks for paraesthesia as 2.71, 2.2, and 2.42, respectively. However, the SUCRA probabilities of paresthesia for each treatment in the network were higher for Lasmiditan. Conclusions: This meta-analysis of reported placebo-controlled clinical trials suggests that the SUCRA probabilities for the manifestation of paresthesia are higher with Lasmiditan. The relative risk of paresthesia is higher with the use of Topiramate 200 mg, Lasmiditan 400 mg, and Zolmitriptan 10 mg. In addition, Lasmiditan exhibited a gradual dose-response of relative risk for the manifestation of paresthesia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA