Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 35(7): 3218-29, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25698756

RESUMO

Autism spectrum disorder (ASD) is increasingly thought to result from low-level deficits in synaptic development and neural circuit formation that cascade into more complex cognitive symptoms. However, the link between synaptic dysfunction and behavior is not well understood. By comparing the effects of abnormal circuit formation and behavioral outcomes across different species, it should be possible to pinpoint the conserved fundamental processes that result in disease. Here we use a novel model for neurodevelopmental disorders in which we expose Xenopus laevis tadpoles to valproic acid (VPA) during a critical time point in brain development at which neurogenesis and neural circuit formation required for sensory processing are occurring. VPA is a commonly prescribed antiepileptic drug with known teratogenic effects. In utero exposure to VPA in humans or rodents results in a higher incidence of ASD or ASD-like behavior later in life. We find that tadpoles exposed to VPA have abnormal sensorimotor and schooling behavior that is accompanied by hyperconnected neural networks in the optic tectum, increased excitatory and inhibitory synaptic drive, elevated levels of spontaneous synaptic activity, and decreased neuronal intrinsic excitability. Consistent with these findings, VPA-treated tadpoles also have increased seizure susceptibility and decreased acoustic startle habituation. These findings indicate that the effects of VPA are remarkably conserved across vertebrate species and that changes in neural circuitry resulting from abnormal developmental pruning can cascade into higher-level behavioral deficits.


Assuntos
Anticonvulsivantes/efeitos adversos , Deficiências do Desenvolvimento/induzido quimicamente , Ácido Valproico/efeitos adversos , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva/efeitos dos fármacos , Convulsivantes/toxicidade , Dendritos/efeitos dos fármacos , Dendritos/patologia , Deficiências do Desenvolvimento/fisiopatologia , Modelos Animais de Doenças , Reação de Fuga/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Habituação Psicofisiológica/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Pentilenotetrazol/toxicidade , Reflexo de Sobressalto/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/patologia , Colículos Superiores/efeitos dos fármacos , Colículos Superiores/patologia , Transtornos da Visão/etiologia , Xenopus laevis
2.
Neural Dev ; 11(1): 14, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27503008

RESUMO

BACKGROUND: Fragile X Syndrome is the leading monogenetic cause of autism and most common form of intellectual disability. Previous studies have implicated changes in dendritic spine architecture as the primary result of loss of Fragile X Mental Retardation Protein (FMRP), but recent work has shown that neural proliferation is decreased and cell death is increased with either loss of FMRP or overexpression of FMRP. The purpose of this study was to investigate the effects of loss of FMRP on behavior and cellular activity. METHODS: We knocked down FMRP expression using morpholino oligos in the optic tectum of Xenopus laevis tadpoles and performed a series of behavioral and electrophysiological assays. We investigated visually guided collision avoidance, schooling, and seizure propensity. Using single cell electrophysiology, we assessed intrinsic excitability and synaptic connectivity of tectal neurons. RESULTS: We found that FMRP knockdown results in decreased swimming speed, reduced schooling behavior and decreased seizure severity. In single cells, we found increased inhibition relative to excitation in response to sensory input. CONCLUSIONS: Our results indicate that the electrophysiological development of single cells in the absence of FMRP is largely unaffected despite the large neural proliferation defect. The changes in behavior are consistent with an increase in inhibition, which could be due to either changes in cell number or altered inhibitory drive, and indicate that FMRP can play a significant role in neural development much earlier than previously thought.


Assuntos
Comportamento Animal , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Inibição Neural , Neurônios/fisiologia , Colículos Superiores/fisiologia , Animais , Reação de Fuga/fisiologia , Potenciais Pós-Sinápticos Excitadores , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Técnicas de Silenciamento de Genes , Potenciais da Membrana , Neurônios/metabolismo , Convulsões/genética , Colículos Superiores/metabolismo , Natação/fisiologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA