Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Radiography (Lond) ; 30(1): 1-5, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864985

RESUMO

INTRODUCTION: The aim of this study was to experimentally measure organ doses for computed tomography (CT) procedures using thermoluminescence dosimeters (TLDs) on a RANDO anthropomorphic phantom and verify the measured doses using CT-Expo software. METHODS: The phantom was irradiated using clinical CT scan protocols routinely used for specific procedures in the radiology department. Fifty TLD chips were used in this study. The scanning parameters (kVp, mA, s) used to scan the phantom were used as input parameters for CT-Expo dose estimations. RESULTS: The TLD measured organ doses varied between 3.97 mGy for the esophagus and 56.22 mGy for the brain. High doses were recorded in the brain (37.80-56.22 mGy) and the eye lens (29.94-36.16 mGy). Comparing the organ dose measurements between TLD and CT-Expo, the maximum organ dose difference was obtained for the eye lens. A comparison between the two methods for the other organs were all less than 32 %. The effective doses from the TLD measurements for the head, chest, and abdominopelvic CT examinations were 2.78, 6.67, and 17 mSv, respectively and CT-Expo were 2.20, 10.30, and 16.70 mSv, respectively. CONCLUSION: The experimental and computational results are comparable, and the reliability of the TLD measurements and CT-Expo dose calculator has been proven. IMPLICATIONS FOR STUDY: A reason for the difference in dose measurements between the two methods has been attributed to the dissimilarity in the organ position in the Rando anthropomorphic phantom and the standard mathematical phantom used by CT-Expo. The experimental and computational results have been found to be comparable.


Assuntos
Software , Tomografia Computadorizada por Raios X , Humanos , Doses de Radiação , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Tórax
2.
Radiat Prot Dosimetry ; 148(1): 3-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21335631

RESUMO

The dose management system (DMS) is a computer software developed by the International Atomic Energy Agency for managing data on occupational exposure to radiation sources and intake of radionuclides. It is an integrated system for the user-friendly storage, processing and control of all existing internal and external dosimetry data. The Radiation Protection Board (RPB) of the Ghana Atomic Energy Commission has installed, customised, tested and using the DMS as a comprehensive DMS to improve personnel and area monitoring in the country. Personnel dose records from the RPBs database from 2000 to 2009 are grouped into medical, industrial and education/research sectors. The medical sector dominated the list of monitored institutions in the country over the 10-y period representing ∼87 %, while the industrial and education/research sectors represent ∼9 and ∼4 %, respectively. The number of monitored personnel in the same period follows a similar trend with medical, industrial and education/research sectors representing ∼74, ∼17 and ∼9 %, respectively. Analysis of dose data for 2009 showed that there was no instance of a dose above the annual dose limit of 20 mSv, however, 2.7 % of the exposed workers received individual annual doses >1 mSv. The highest recorded individual annual dose and total collective dose in all sectors were 4.73 mSv and 159.84 man Sv, respectively. Workers in the medical sector received higher individual doses than in the other two sectors, and average dose per exposed worker in all sectors is 0.25 mSv.


Assuntos
Comitês de Monitoramento de Dados de Ensaios Clínicos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Exposição Ocupacional/análise , Monitoramento de Radiação , Proteção Radiológica/métodos , Software , Gana , Órgãos Governamentais , Regulamentação Governamental , Humanos , Exposição Ocupacional/estatística & dados numéricos
3.
Radiat Prot Dosimetry ; 149(4): 431-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21743072

RESUMO

Occupational exposure to radiation in medical practice in Ghana has been analysed for a 10-y period between 2000 and 2009. Monitored dose data in the medical institution in Ghana from the Radiation Protection Institute's database were extracted and analysed in terms of three categories: diagnostic radiology, radiotherapy and nuclear medicine. One hundred and eighty medical facilities were monitored for the 10-y period, out of which ~98% were diagnostic radiology facilities. Only one nuclear medicine and two radiotherapy facilities have been operational in the country since 2000. During the 10-y study period, monitored medical facilities increased by 18.8%, while the exposed workers decreased by 23.0%. Average exposed worker per entire medical institution for the 10-y study period was 4.3. Annual collective dose received by all the exposed workers reduced by a factor of 4 between 2000 and 2009. This is seen as reduction in annual collective doses in diagnostic radiology, radiotherapy and nuclear medicine facilities by ~76, ~72 and ~55%, respectively, for the 10-y period. Highest annual collective dose of 601.2 man mSv was recorded in 2002 and the least of 142.6 man mSv was recorded in 2009. Annual average values for dose per institution and dose per exposed worker decreased by 79 and 67.6%, respectively between 2000 and 2009. Average dose per exposed worker for the 10-y period was least in radiotherapy and highest in diagnostic radiology with values 0.14 and 1.05 mSv, respectively. Nuclear medicine however recorded average dose per worker of 0.72 mSv. Correspondingly, range of average effective doses within the diagnostic radiology, radiotherapy and nuclear medicine facilities were 0.328-2.614, 0.383-0.728 and 0.448-0.695 mSv, respectively. Throughout the study period, an average dose per medical institution of 3 mSv and an average dose per exposed worker of 0.69 mSv were realised. Exposed workers in diagnostic radiology primarily received most of the individual annual doses >1 mSv. The entire study period had 705 instances in which exposed workers received individual annual doses >1 mSv. On thermoluminescent dosemeter (TLD) return rates, facilities in Volta and Eastern Regions recorded highest return rates of 94.3% each. Ashanti Region recorded the least TLD return rate with 76.7%.


Assuntos
Exposição Ocupacional/análise , Doses de Radiação , Monitoramento de Radiação/métodos , Radiografia/métodos , Dosimetria Termoluminescente/métodos , Contagem Corporal Total/métodos , Bases de Dados Factuais , Gana , Humanos , Medicina Nuclear/métodos , Radioterapia/métodos , Irradiação Corporal Total
4.
Radiat Prot Dosimetry ; 150(3): 350-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22021059

RESUMO

Institutions in the education, research and industrial sectors in Ghana are quite few in comparison to the medical sector. Occupational exposure to radiation in the education, research and industrial sectors in Ghana have been analysed for a 10 y period between 2000 and 2009, by extracting dose data from the database of the Radiation Protection Institute, Ghana Atomic Energy Commission. Thirty-four institutions belonging to the three sectors were monitored out of which ∼65% were in the industrial sector. During the 10 y study period, monitored institutions ranged from 18 to 23 while the exposed workers ranged from 246 to 156 between 2000 and 2009. Annual collective doses received by all the exposed workers reduced by a factor of 2 between 2000 and 2009. This is seen as a reduction in annual collective doses in education/research and industrial sectors by ∼39 and ∼62%, respectively, for the 10 y period. Highest and least annual collective doses of 182.0 man mSv and 68.5 man mSv were all recorded in the industrial sector in 2000 and 2009, respectively. Annual average values for dose per institution and dose per exposed worker decreased by 49 and 42.9%, respectively, between 2000 and 2009. Average dose per exposed worker for the 10 y period was least in the industrial sector and highest in the education/research sector with values 0.6 and 3.7 mSv, respectively. The mean of the ratio of annual occupationally exposed worker (OEW) doses for the industrial sector to the annual OEW doses for the education/research sector was 0.67, a suggestion that radiation protection practices are better in the industrial sector than they are in the education/research sector. Range of institutional average effective doses within the education/research and industrial sectors were 0.059-6.029, and 0.110-2.945 mSv, respectively. An average dose per all three sectors of 11.87 mSv and an average dose per exposed worker of 1.12 mSv were realised for the entire study period. The entire study period had 187 instances in which exposed workers received individual annual doses >1 mSv, with exposed workers in the education/research sector primarily receiving most of this individual dose.


Assuntos
Exposição Ocupacional/análise , Monitoramento de Radiação , Radiação Ionizante , Contagem Corporal Total , Centros Médicos Acadêmicos , Pesquisa Biomédica , Feminino , Gana , Humanos , Indústrias , Masculino , Doses de Radiação , Dosimetria Termoluminescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA