RESUMO
BACKGROUND: Available evidence suggest that Ca2+/calmodulin-dependent protein kinase type IIδ (CaMKIIδ) and reactive oxygen species (ROS) are important in early ischemia-reperfusion arrhythmias (IRA). Since ROS can activate CaMKIIδ by oxidation of two methionines at positions 281/282, oxidized-CaMKIIδ (Ox-CaMKIIδ) has been proposed to be important for IRA. However, direct evidence for this is missing. METHODS: We exposed Langendorff-perfused hearts and ventricular cardiomyocytes from C57BL/6 mice to global and simulated ischemia, respectively, and recorded arrhythmic events during early reperfusion. Hearts were collected for immunoblotting of key phosphoproteins. We evaluated the effects of beta-adrenoceptor stimulation, inhibition of CaMKII, and reduced ROS levels with isoprenaline, KN93/AIP and N-acetylcysteine (NAC), respectively. We further tested the importance of Ox-CaMKIIδ by using hearts and cardiomyocytes from mice with CaMKIIδ resistant to oxidation of methionines 281 and 282 (MMVV). RESULTS: Hearts treated with KN93, AIP or NAC had lower incidence of early IRA, and NAC-treated cardiomyocytes had lower incidence of arrhythmogenic events. However, hearts from MMVV mice had a similar incidence of early IRA to wild type mice (WT), and MMVV and WT cardiomyocytes had a similar frequency of Ca2+ waves and Ca2+ sparks. Immunoblotting confirmed high levels of oxidation in early reperfusion, but revealed no significant differences in the phosphorylation levels of Ca2+-handling proteins in MMVV and WT hearts. CONCLUSIONS: Although CaMKII and ROS both contribute to early IRA, hearts from mice with CaMKII resistant to oxidation at methionines 281/282 were not protected from such arrhythmias, suggesting that oxidation at these sites is not a determining factor.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Metionina , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Metionina/metabolismo , Camundongos Endogâmicos C57BL , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Racemetionina/metabolismo , Reperfusão/efeitos adversos , FosforilaçãoRESUMO
Pathological myocardial hypertrophy in response to an increase in left ventricular (LV) afterload may ultimately lead to heart failure. Cell surface receptors bridge the interface between the cell and the extracellular matrix (ECM) in cardiac myocytes and cardiac fibroblasts and have been suggested to be important mediators of pathological myocardial hypertrophy. We identify for the first time that integrin α11 (α11) is preferentially upregulated among integrin ß1 heterodimer-forming α-subunits in response to increased afterload induced by aortic banding (AB) in wild-type (WT) mice. Mice were anesthetized in a chamber with 4% isoflurane and 95% oxygen before being intubated and ventilated with 2.5% isoflurane and 97% oxygen. For pre- and postoperative analgesia, animals were administered 0.02-mL buprenorphine (0.3 mg/mL) subcutaneously. Surprisingly, mice lacking α11 develop myocardial hypertrophy following AB comparable to WT. In the mice lacking α11, we further show a compensatory increase in the expression of another mechanoreceptor, syndecan-4, following AB compared with WT AB mice, indicating that syndecan-4 compensated for lack of α11. Intriguingly, mice lacking mechanoreceptors α11 and syndecan-4 show ablated myocardial hypertrophy following AB compared with WT mice. Expression of the main cardiac collagen isoforms col1a2 and col3a1 was significantly reduced in AB mice lacking mechanoreceptors α11 and syndecan-4 compared with WT AB.NEW & NOTEWORTHY Despite their putative importance in stress sensing, the specific integrin α-subunit(s) involved in cardiac hypertrophy has not been identified. Here, we show that α11 and syndecan-4 are critical and interdependent mediators of the hypertrophic response to increased LV afterload. We demonstrate in cells lacking both receptors an interdependent reduction in cell attachment to the major cardiac extracellular matrix components, suggesting that their interplay represents an important mechanism for stress sensing in cardiac cells.
Assuntos
Isoflurano , Sindecana-4 , Animais , Cardiomegalia/metabolismo , Cadeias alfa de Integrinas/metabolismo , Integrinas/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Receptores de Colágeno , Sindecana-4/genética , Sindecana-4/metabolismoRESUMO
The myocardial infarction (MI) rat model plays a crucial role in modern cardiovascular research, but the inherent heterogeneity of this model represents a challenge. We sought to identify subgroups among the post-MI rats and establish simple noninvasive stratification protocols for such subgroups. Six weeks after induction of MI, 49 rats underwent noninvasive examinations using magnetic resonance imaging (MRI) and echocardiography. Twelve sham-operated rats served as controls. Increased end-diastolic left ventricular (LV) pressure and lung weight served as indicators for congestive heart failure (CHF). A clustering algorithm using 13 noninvasive and invasive parameters was used to identify distinct groups among the animals. The cluster analysis revealed four distinct post-MI phenotypes; two without congestion but with different degree of LV dilatation, and two with different degree of congestion and right ventricular (RV) affection. Among the MRI parameters, RV mass emerged as robust noninvasive marker of CHF with 100% specificity/sensitivity. Moreover, LV infarct size and RV ejection fraction further predicted subgroup among the non-CHF and CHF rats with excellent specificity/sensitivity. Of the echocardiography parameters, left atrial diameter predicted CHF. Moreover, LV end-diastolic diameter predicted the subgroups among the non-CHF rats. We propose two simple noninvasive schemes to stratify post-MI rats, based on the degree of heart failure; one for MRI and one for echocardiography.NEW & NOTEWORTHY In vivo phenotyping of rats is essential for robust and reliable data. Here, we present two simple noninvasive schemes for the stratification of postinfarction rats based on the degree of heart failure: one using magnetic resonance imaging and one based on echocardiography.
Assuntos
Ecocardiografia/métodos , Coração/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Algoritmos , Animais , Cardiomiopatia Dilatada/fisiopatologia , Testes de Função Cardíaca , Masculino , Ratos , Ratos Wistar , Volume Sistólico , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular EsquerdaRESUMO
Background: Arrhythmias in the early phase of reperfusion after myocardial infarction (MI) are common, and can lead to hemodynamic instability or even cardiac arrest. Reactive oxygen species (ROS) are thought to play a key role in the underlying mechanisms, but evidence from large animal models is scarce, and effects of systemic antioxidative treatment remain contentious. Methods: MI was induced in 7 male and 7 female pigs (Norwegian landrace, 35-40â kg) by clamping of the left anterior descending artery (LAD) during open thorax surgery. Ischemia was maintained for 90â min, before observation for 1â h after reperfusion. Pigs were randomized 1:1 in an operator-blinded fashion to receive either i.v. N-acetylcysteine (NAC) from 70â min of ischemia and onwards, or 0.9% NaCl as a control. Blood samples and tissue biopsies were collected at baseline, 60â min of ischemia, and 5 and 60â min of reperfusion. ECG and invasive blood pressure were monitored throughout. Results: The protocol was completed in 11 pigs. Oxidative stress, as indicated by immunoblotting for Malondialdehyde in myocardial biopsies, was increased at 5â min of reperfusion compared to baseline, but not at 60â min of reperfusion, and not reduced with NAC. We found no significant differences in circulating biomarkers of myocardial necrosis, nor in the incidence of idioventricular rhythm (IVR), non-sustained ventricular tachycardia (NSVT), ventricular tachycardia (VT) or ventricular fibrillation (VF) between NAC-treated and control pigs during reperfusion. Conclusion: Myocardial oxidation was increased early after reperfusion in a porcine model of MI, but systemic antioxidative treatment did not protect against reperfusion arrhythmias.
RESUMO
Cardiac fibrosis is a central pathological feature in several cardiac diseases, but the underlying molecular players are insufficiently understood. The extracellular matrix proteoglycan versican is elevated in heart failure and suggested to be a target for treatment. However, the temporal expression and spatial distribution of versican and the versican cleavage fragment containing the neoepitope DPEAAE in cardiac fibrosis remains to be elucidated. In this study, we have examined versican during cardiac fibrosis development in a murine pressure overload model and in patients with cardiomyopathies. We found that versican, mainly the V1 isoform, was expressed immediately after induction of pressure overload, preceding collagen accumulation, and versican protein levels extended from the perivascular region into the cardiac interstitium. In addition, we found increased production of versican by collagen expressing fibroblasts, and that it was deposited extensively in the fibrotic extracellular matrix during pressure overload. In cardiac cell cultures, the expression of versican was induced by the pro-fibrotic transforming growth factor beta and mechanical stretch. Furthermore, we observed that the proteolytic cleavage of versican (DPEAAE fragment) increased in the late phase of fibrosis development during pressure overload. In patients with hypertrophic and dilated cardiomyopathies, we found elevated levels of versican and a positive correlation between versican and collagen mRNA in the heart, as well as increased cleavage of full-length protein. Taken together, the temporal expression profile and the spatial distribution of both the full-length versican and the DPEAAE fragment observed in this study indicates a role for versican in development of cardiac fibrosis.
RESUMO
AIMS: Aortic stenosis induces pressure overload and myocardial remodelling with concentric hypertrophy and alterations in extracellular matrix (ECM). Aortic valve replacement leads to reverse remodelling, a process of which knowledge is scarce. The aims of the present study were to examine alterations in myocardial gene expression and subsequently identify molecular alterations important for the early phase of reverse remodelling. METHODS AND RESULTS: After 4 weeks of ascending aortic banding, mice were subjected to a debanding operation (DB) and followed for 3, 7, or 14 days. Cardiac function was assessed by echocardiography/tissue Doppler ultrasonography. Myocardial gene expression was examined using Affymetrix microarray and the topGO software and verified by real-time polymerase chain reaction. Quantitative measurements of collagen subtypes were performed. Aortic banding increased left ventricular mass by 60%, with normalization to sham level 14 days after DB. Extracellular matrix genes were the most regulated after DB. Three days after DB, collagen I was transiently increased, whereas collagens III and VIII increased later at 7 days. CONCLUSION: The ECM genes were the most altered during reverse remodelling. There was a change in isoform constitution as collagen type I increased transiently at 3 days followed by a later increase in types III and VIII at 7 days after DB. This might be important for the biomechanical properties of the heart and recovery of cardiac function.
Assuntos
Estenose da Valva Aórtica/metabolismo , Colágeno/química , Remodelação Ventricular/fisiologia , Animais , Estenose da Valva Aórtica/fisiopatologia , Biomarcadores/metabolismo , Pressão Sanguínea , Débito Cardíaco/fisiologia , Ensaio de Imunoadsorção Enzimática , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Miocárdio/química , Isoformas de Proteínas/química , RNA Mensageiro/metabolismo , Ultrassonografia DopplerRESUMO
AIMS: Sacubitril/valsartan (sac/val) has shown superior effect compared with blockade of the renin-angiotensin-aldosterone system in heart failure with reduced ejection fraction. We aimed to investigate effects of sac/val compared with valsartan in a pressure overload model of heart failure with preserved ejection fraction (HFpEF). METHODS AND RESULTS: Sprague-Dawley rats underwent aortic banding or sham (n = 16) surgery and were randomized to sac/val (n = 28), valsartan (n = 29), or vehicle (n = 26) treatment for 8 weeks. Sac/val reduced left ventricular weight by 11% compared with vehicle (P = 0.01) and 9% compared with valsartan alone (P = 0.04). Only valsartan reduced blood pressure compared with sham (P = 0.02). Longitudinal early diastolic strain rate was preserved in sac/val compared with sham, while it was reduced by 23% in vehicle (P = 0.03) and 24% in valsartan (P = 0.02). Diastolic dysfunction, measured by E/e'SR, increased by 68% in vehicle (P < 0.01) and 80% in valsartan alone (P < 0.001), while sac/val showed no increase. Neither sac/val nor valsartan prevented interstitial fibrosis. Although ejection fraction was preserved, we observed mild systolic dysfunction, with vehicle showing a 28% decrease in longitudinal strain (P < 0.01). Neither sac/val nor valsartan treatment improved this dysfunction. CONCLUSIONS: In a model of HFpEF induced by cardiac pressure overload, sac/val reduced hypertrophy compared with valsartan alone and ameliorated diastolic dysfunction. These effects were independent of blood pressure. Early systolic dysfunction was not affected, supporting the notion that sac/val has the largest potential in conditions characterized by reduced ejection fraction. Observed anti-hypertrophic effects in preserved ejection fraction implicate potential benefit of sac/val in the clinical setting of hypertrophic remodelling and impaired diastolic function.
Assuntos
Insuficiência Cardíaca , Aminobutiratos , Animais , Compostos de Bifenilo , Cardiomegalia , Combinação de Medicamentos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Ratos , Ratos Sprague-Dawley , Volume Sistólico , ValsartanaRESUMO
AIMS: Diastolic dysfunction is central to the development of heart failure. To date, there is no effective treatment and only limited understanding of its molecular basis. Recently, we showed that the transmembrane proteoglycan syndecan-4 increases in the left ventricle after pressure overload in mice and man, and that syndecan-4 via calcineurin/nuclear factor of activated T-cells (NFAT) promotes myofibroblast differentiation and collagen production upon mechanical stress. The aim of this study was to investigate whether syndecan-4 affects collagen cross-linking and myocardial stiffening in the pressure-overloaded heart. METHODS AND RESULTS: Aortic banding (AB) caused concentric hypertrophy and increased passive tension of left ventricular muscle strips, responses that were blunted in syndecan-4(-/-) mice. Disruption of titin anchoring by salt extraction of actin and myosin filaments revealed that the effect of syndecan-4 on passive tension was due to extracellular matrix remodelling. Expression and activity of the cross-linking enzyme lysyl oxidase (LOX) increased with mechanical stress and was lower in left ventricles and cardiac fibroblasts from syndecan-4(-/-) mice, which exhibited less collagen cross-linking after AB. Expression of osteopontin (OPN), a matricellular protein able to induce LOX in cardiac fibroblasts, was up-regulated in hearts after AB, in mechanically stressed fibroblasts and in fibroblasts overexpressing syndecan-4, calcineurin, or NFAT, but down-regulated in fibroblasts lacking syndecan-4 or after NFAT inhibition. Interestingly, the extracellular domain of syndecan-4 facilitated LOX-mediated collagen cross-linking. CONCLUSIONS: Syndecan-4 exerts a dual role in collagen cross-linking, one involving its cytosolic domain and NFAT signalling leading to collagen, OPN, and LOX induction in cardiac fibroblasts; the other involving the extracellular domain promoting LOX-dependent cross-linking.
Assuntos
Colágeno/metabolismo , Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Sindecana-4/metabolismo , Animais , Matriz Extracelular/metabolismo , Coração/fisiopatologia , Insuficiência Cardíaca/genética , Camundongos , Camundongos Knockout , Proteína-Lisina 6-Oxidase/metabolismo , Estresse Fisiológico , Sindecana-4/genéticaRESUMO
Sustained pressure overload induces heart failure, the main cause of mortality in the Western world. Increased understanding of the underlying molecular mechanisms is essential to improve heart failure treatment. Despite important functions in other tissues, cardiac proteoglycans have received little attention. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is essential for pathological remodeling, and we here investigated its expression and shedding during heart failure. Pressure overload induced by aortic banding for 24 h and 1 week in mice increased syndecan-4 mRNA, which correlated with mRNA of inflammatory cytokines. In cardiac myocytes and fibroblasts, tumor necrosis factor-α, interleukin-1ß and lipopolysaccharide through the toll-like receptor-4, induced syndecan-4 mRNA. Bioinformatical and mutational analyses in HEK293 cells identified a functional site for the proinflammatory nuclear factor-κB transcription factor in the syndecan-4 promoter, and nuclear factor-κB regulated syndecan-4 mRNA in cardiac cells. Interestingly, tumor necrosis factor-α, interleukin-1ß and lipopolysaccharide induced nuclear factor-κB-dependent shedding of the syndecan-4 ectodomain from cardiac cells. Overexpression of syndecan-4 with mutated enzyme-interacting domains suggested enzyme-dependent heparan sulfate chains to regulate shedding. In cardiac fibroblasts, lipopolysaccharide reduced focal adhesion assembly, shown by immunohistochemistry, suggesting that inflammation-induced shedding affects function. After aortic banding, a time-dependent cardiac recruitment of T lymphocytes was observed by measuring CD3, CD4 and CD8 mRNA, which was reduced in syndecan-4 knockout hearts. Finally, syndecan-4 mRNA and shedding were upregulated in failing human hearts. Conclusively, our data suggest that syndecan-4 plays an important role in the immune response of the heart to increased pressure, influencing cardiac remodeling and failure progression.
Assuntos
Fibroblastos/metabolismo , Imunidade Inata , Inflamação/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Sindecana-4/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Benzamidas/farmacologia , Adesão Celular , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Adesões Focais/efeitos dos fármacos , Células HEK293 , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Sindecana-4/genética , Sindecana-4/imunologia , Linfócitos T/metabolismo , Tiazóis/farmacologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Remodelação VentricularRESUMO
AIMS: Left ventricular (LV) pressure overload leads to myocardial remodelling and reduced cardiac function. Both cardioprotective and deleterious effects have been attributed to SMAD2/3 (SMAD, small mothers against decapentaplegic) signalling, but the role of these important molecules in pressure overload remains unclear. The aim of this study was to examine the effects of SMAD2 inhibition on cardiac function and remodelling in mice subjected to aortic banding (AB), using a small molecule inhibitor (SM16) of SMAD2 signalling. METHODS AND RESULTS: C57BL/6 mice were subjected to 1 week of AB, which led to a three-fold increased phosphorylation of SMAD2 that was reduced by SM16 (P≤ 0.05), as measured by western blotting. Cardiac function was evaluated by echocardiography and was preserved by SM16, as fractional shortening was increased by 38% (P≤ 0.05) and mitral flow deceleration reduced by 28% compared with AB mice not receiving SM16 (P≤ 0.05). In accordance with this, SM16 abolished the 21% increase in lung weight in AB mice (P≤ 0.05). Cardiomyocyte hypertrophy and foetal gene expression, as measured by qPCR, were also reduced. Myocardial collagen protein was unaltered 1 week after AB. LV sarcoplasmic reticulum Ca(2+)ATPase (SERCA2) reduction in AB mice and in transforming growth factor-ß1-stimulated rat cardiomyocytes was diminished by SM16. Ca(2+) transient decay kinetics were improved in cardiomyocytes isolated from AB mice receiving SM16. CONCLUSION: In pressure overload, pharmacological inhibition of SMAD2 signalling attenuated cardiomyocyte hypertrophy and preserved cardiac function. SM16 prevented SMAD2-mediated downregulation of SERCA2 in vivo and in cardiomyocytes, suggesting improved cardiomyocyte Ca(2+) handling as a possible cardioprotective mechanism.
Assuntos
Compostos Azabicíclicos/farmacologia , Proteína Smad2/antagonistas & inibidores , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/fisiopatologia , Actinas/genética , Animais , Sinalização do Cálcio/efeitos dos fármacos , Crescimento Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/genética , Fator 15 de Diferenciação de Crescimento/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/genética , Disfunção Ventricular Esquerda/etiologia , Remodelação Ventricular/fisiologiaRESUMO
Sustained pressure overload leads to compensatory myocardial hypertrophy and subsequent heart failure, a leading cause of morbidity and mortality. Further unraveling of the cellular processes involved is essential for development of new treatment strategies. We have investigated the hypothesis that the transmembrane Z-disc proteoglycan syndecan-4, a co-receptor for integrins, connecting extracellular matrix proteins to the cytoskeleton, is an important signal transducer in cardiomyocytes during development of concentric myocardial hypertrophy following pressure overload. Echocardiographic, histochemical and cardiomyocyte size measurements showed that syndecan-4(-/-) mice did not develop concentric myocardial hypertrophy as found in wild-type mice, but rather left ventricular dilatation and dysfunction following pressure overload. Protein and gene expression analyses revealed diminished activation of the central, pro-hypertrophic calcineurin-nuclear factor of activated T-cell (NFAT) signaling pathway. Cardiomyocytes from syndecan-4(-/-)-NFAT-luciferase reporter mice subjected to cyclic mechanical stretch, a hypertrophic stimulus, showed minimal activation of NFAT (1.6-fold) compared to 5.8-fold increase in NFAT-luciferase control cardiomyocytes. Accordingly, overexpression of syndecan-4 or introducing a cell-permeable membrane-targeted syndecan-4 polypeptide (gain of function) activated NFATc4 in vitro. Pull-down experiments demonstrated a direct intracellular syndecan-4-calcineurin interaction. This interaction and activation of NFAT were increased by dephosphorylation of serine 179 (pS179) in syndecan-4. During pressure overload, phosphorylation of syndecan-4 was decreased, and association between syndecan-4, calcineurin and its co-activator calmodulin increased. Moreover, calcineurin dephosphorylated pS179, indicating that calcineurin regulates its own binding and activation. Finally, patients with hypertrophic myocardium due to aortic stenosis had increased syndecan-4 levels with decreased pS179 which was associated with increased NFAT activation. In conclusion, our data show that syndecan-4 is essential for compensatory hypertrophy in the pressure overloaded heart. Specifically, syndecan-4 regulates stretch-induced activation of the calcineurin-NFAT pathway in cardiomyocytes. Thus, our data suggest that manipulation of syndecan-4 may provide an option for therapeutic modulation of calcineurin-NFAT signaling.
Assuntos
Calcineurina/metabolismo , Hipertrofia/metabolismo , Miocárdio/patologia , Fatores de Transcrição NFATC/metabolismo , Sindecana-4/fisiologia , Animais , Estenose da Valva Aórtica/patologia , Calmodulina/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Hipertrofia/patologia , Hipertrofia Ventricular Esquerda/patologia , Luciferases/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Fosforilação , Transdução de Sinais , Sindecana-4/genéticaRESUMO
PURPOSE: Patients with chronic heart failure (CHF) typically complain about skeletal muscle fatigue. In rat experiments, reduced intracellular calcium release seems to be related to fatigue development in normal skeletal muscle but not in muscle from rats with CHF. We therefore hypothesize that training may not improve intracellular calcium cycling to the same extent in muscles from patients with CHF compared with healthy controls (HC). METHODS: Thirteen HC and 11 CHF patients performed 6 wk of unilateral knee extensor endurance training. Computed tomographic examinations of the thigh and biopsies of vastus lateralis were obtained bilaterally before and after the training period. RESULTS: Peak power of the trained leg was 10% and 14% greater than that in the untrained leg in HC and CHF, respectively. For the HC, training resulted in a higher Ca2+ release rate and a lower leak in the trained leg associated with a tendency of increased ryanodine receptor (RyR) content with reduced phosphorylation level. In the trained leg of CHF patients, RyR content was reduced without associated changes of either Ca2+ leak or release rate. CONCLUSIONS: Training in HC has an effect on Ca2+ leak and release of the sarcoplasmic reticulum, but in CHF patients, training is achieved without such changes. Thus, calcium handling seems not to be the site of decreased exercise tolerance in CHF.