Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36850894

RESUMO

Magnesium (Mg) alloys possess unique properties that make them ideal for use as biodegradable implants in clinical applications. However, reports on the in vivo assessment of these alloys are insufficient. Thus, monitoring the degradation of Mg and its alloys in vivo is challenging due to the dynamic process of implant degradation and tissue regeneration. Most current works focus on structural remodeling, but functional assessment is crucial in providing information about physiological changes in tissues, which can be used as an early indicator of healing. Here, we report continuous wave near-infrared spectroscopy (CW NIRS), a non-invasive technique that is potentially helpful in assessing the implant-tissue dynamic interface in a rodent model. The purpose of this study was to investigate the effects on hemoglobin changes and tissue oxygen saturation (StO2) after the implantation of Mg-alloy (WE43) and titanium (Ti) implants in rats' femurs using a multiwavelength optical probe. Additionally, the effect of changes in the skin on these parameters was evaluated. Lastly, combining NIRS with photoacoustic (PA) imaging provides a more reliable assessment of tissue parameters, which is further correlated with principal component analysis.


Assuntos
Implantes Absorvíveis , Espectroscopia de Luz Próxima ao Infravermelho , Ratos , Animais , Ligas , Magnésio , Análise de Componente Principal
2.
Sensors (Basel) ; 23(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36991774

RESUMO

Biodegradable magnesium-based implants offer mechanical properties similar to natural bone, making them advantageous over nonbiodegradable metallic implants. However, monitoring the interaction between magnesium and tissue over time without interference is difficult. A noninvasive method, optical near-infrared spectroscopy, can be used to monitor tissue's functional and structural properties. In this paper, we collected optical data from an in vitro cell culture medium and in vivo studies using a specialized optical probe. Spectroscopic data were acquired over two weeks to study the combined effect of biodegradable Mg-based implant disks on the cell culture medium in vivo. Principal component analysis (PCA) was used for data analysis. In the in vivo study, we evaluated the feasibility of using the near-infrared (NIR) spectra to understand physiological events in response to magnesium alloy implantation at specific time points (Day 0, 3, 7, and 14) after surgery. Our results show that the optical probe can detect variations in vivo from biological tissues of rats with biodegradable magnesium alloy "WE43" implants, and the analysis identified a trend in the optical data over two weeks. The primary challenge of in vivo data analysis is the complexity of the implant interaction near the interface with the biological medium.


Assuntos
Ligas , Magnésio , Ratos , Animais , Magnésio/química , Ligas/química , Espectroscopia de Luz Próxima ao Infravermelho , Implantes Absorvíveis , Modelos Animais , Teste de Materiais
3.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682779

RESUMO

Magnesium (Mg)-based degradable alloys have attracted substantial attention for tissue engineering applications due to their biodegradability and potential for avoiding secondary removal surgeries. However, insufficient data in the existing literature regarding Mg's corrosion and gas formation after implantation have delayed its wide clinical application. Since the surface properties of degradable materials constantly change after contact with body fluid, monitoring the behaviour of Mg in phantoms or buffer solutions could provide some information about its physicochemical surface changes over time. Through surface analysis and spectroscopic analysis, we aimed to investigate the structural and functional properties of degradable disks. Since bubble formation may lead to inflammation and change pH, monitoring components related to acidosis near the cells is essential. To study the bubble formation in cell culture media, we used a newly developed Mg alloy (based on Mg, zinc, and calcium), pure Mg, and commercially available grade 2 Titanium (Ti) disks in Dulbecco's Modified Eagle Medium (DMEM) solution to observe their behaviour over ten days of immersion. Using surface analysis and the information from near-infrared spectroscopy (NIRS), we concluded on the conditions associated with the medical risks of Mg alloy disintegration. NIRS is used to investigate the degradation behaviour of Mg-based disks in the cell culture media, which is correlated with the surface analysis where possible.


Assuntos
Ligas , Magnésio , Ligas/química , Corrosão , Magnésio/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Propriedades de Superfície
4.
Med Eng Phys ; 93: 49-58, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154775

RESUMO

Medical implants made of biodegradable materials are advantageous for short-term applications as fracture fixation and mechanical support during bone healing. After completing the healing process, the implant biodegrades without any long-term side effects nor any need for surgical removal. In particular, Magnesium (Mg) implants, while degrading, can cause physiological changes in the tissues surrounding the implant. The evaluation of structural remodeling is relevant, however, the functional assessment is crucial to provide information about physiological changes in tissues, which can be applied as an early marker during the healing process. Hence, non-invasive monitoring of structural and functional changes in the surrounding tissue during the healing process is essential, and the need for new assessing methods is emerging. This paper provides an assessment of Mg based implants, and an extensive review of the literature is presented with the focus on the imaging techniques for investigation of the Mg implants' biodegradation. The potential of a hybrid analysis, including Near-Infrared Spectroscopy (NIRS) and photoacoustic imaging (PAI) technology, is further discussed. A hybrid solution may play a significant role in monitoring implants and have several advantages for monitoring tissue oxygenation in addition to tissue's acidity, which is directly connected to the Mg implants degradation process. Such a hybrid assessment system can be a simple, ambulant, and less costly technology with the potential for clinically monitoring of Mg implants at site.


Assuntos
Ligas , Magnésio , Implantes Absorvíveis , Fixação de Fratura
5.
Front Hum Neurosci ; 14: 613254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33568979

RESUMO

Human gait is a complex activity that requires high coordination between the central nervous system, the limb, and the musculoskeletal system. More research is needed to understand the latter coordination's complexity in designing better and more effective rehabilitation strategies for gait disorders. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are among the most used technologies for monitoring brain activities due to portability, non-invasiveness, and relatively low cost compared to others. Fusing EEG and fNIRS is a well-known and established methodology proven to enhance brain-computer interface (BCI) performance in terms of classification accuracy, number of control commands, and response time. Although there has been significant research exploring hybrid BCI (hBCI) involving both EEG and fNIRS for different types of tasks and human activities, human gait remains still underinvestigated. In this article, we aim to shed light on the recent development in the analysis of human gait using a hybrid EEG-fNIRS-based BCI system. The current review has followed guidelines of preferred reporting items for systematic reviews and meta-Analyses (PRISMA) during the data collection and selection phase. In this review, we put a particular focus on the commonly used signal processing and machine learning algorithms, as well as survey the potential applications of gait analysis. We distill some of the critical findings of this survey as follows. First, hardware specifications and experimental paradigms should be carefully considered because of their direct impact on the quality of gait assessment. Second, since both modalities, EEG and fNIRS, are sensitive to motion artifacts, instrumental, and physiological noises, there is a quest for more robust and sophisticated signal processing algorithms. Third, hybrid temporal and spatial features, obtained by virtue of fusing EEG and fNIRS and associated with cortical activation, can help better identify the correlation between brain activation and gait. In conclusion, hBCI (EEG + fNIRS) system is not yet much explored for the lower limb due to its complexity compared to the higher limb. Existing BCI systems for gait monitoring tend to only focus on one modality. We foresee a vast potential in adopting hBCI in gait analysis. Imminent technical breakthroughs are expected using hybrid EEG-fNIRS-based BCI for gait to control assistive devices and Monitor neuro-plasticity in neuro-rehabilitation. However, although those hybrid systems perform well in a controlled experimental environment when it comes to adopting them as a certified medical device in real-life clinical applications, there is still a long way to go.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA