Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 146: 105118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031903

RESUMO

Fragile X syndrome (FXS), a neurodevelopmental disorder with autistic features, is caused by the loss of the fragile X mental retardation protein. Sex-specific differences in the clinical profile have been observed in FXS patients, but few studies have directly compared males and females in rodent models of FXS. To address this, we performed electroencephalography (EEG) recordings and a battery of autism-related behavioral tasks on juvenile and young adult Fmr1 knockout (KO) rats. EEG analysis demonstrated that compared to wild-type, male Fmr1 KO rats showed an increase in gamma frequency band power in the frontal cortex during the sleep-like immobile state, and both male and female KO rats failed to show an increase in delta frequency power in the sleep-like state, as observed in wild-type rats. Previous studies of EEG profiles in FXS subjects also reported abnormally increased gamma frequency band power, highlighting this parameter as a potential translatable biomarker. Both male and female Fmr1 KO rats displayed reduced exploratory behaviors in the center zone of the open field test, and increased distance travelled in an analysis of 24-h home cage activity, an effect that was more prominent during the nocturnal phase. Reduced wins against wild-type opponents in the tube test of social dominance was seen in both sexes. In contrast, increased repetitive behaviors in the wood chew test was observed in male but not female KO rats, while increased freezing in a fear conditioning test was observed only in the female KO rats. Our findings highlight sex differences between male and female Fmr1 KO rats, and indicate that the rat model of FXS could be a useful tool for the development of new therapeutics for treating this debilitating neurodevelopmental disorder.


Assuntos
Córtex Auditivo/fisiopatologia , Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Estimulação Acústica/métodos , Animais , Ansiedade/fisiopatologia , Córtex Auditivo/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Eletroencefalografia/métodos , Comportamento Exploratório/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Ratos
2.
Neuropsychopharmacology ; 49(8): 1285-1295, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366138

RESUMO

Creating long-lasting memories requires learning-induced changes in gene expression, which are impacted by epigenetic modifications of DNA and associated histone proteins. Post-translational modifications (PTMs) of histones are key regulators of transcription, with different PTMs producing unique effects on gene activity and behavior. Although recent studies implicate histone variants as novel regulators of memory, effects of PTMs on the function of histone variants are rarely considered. We previously showed that the histone variant H2A.Z suppresses memory, but it is unclear if this role is impacted by H2A.Z acetylation, a PTM that is typically associated with positive effects on transcription and memory. To answer this question, we used a mutation approach to manipulate acetylation on H2A.Z without impacting acetylation of other histone types. Specifically, we used adeno-associated virus (AAV) constructs to overexpress mutated H2A.Z.1 isoforms that either mimic acetylation (acetyl-mimic) by replacing lysines 4, 7 and 11 with glutamine (KQ), or H2A.Z.1 with impaired acetylation (acetyl-defective) by replacing the same lysines with alanine (KA). Expressing the H2A.Z.1 acetyl-mimic (H2A.Z.1KQ) improved memory under weak learning conditions, whereas expressing the acetyl-defective H2A.Z.1KA generally impaired memory, indicating that the effect of H2A.Z.1 on memory depends on its acetylation status. RNA sequencing showed that H2A.Z.1KQ and H2A.Z.1KA uniquely impact the expression of different classes of genes in both females and males. Specifically, H2A.Z.1KA preferentially impacts genes involved in synaptic function, suggesting that acetyl-defective H2A.Z.1 impairs memory by altering synaptic regulation. Finally, we describe, for the first time, that H2A.Z is also involved in alternative splicing of neuronal genes, whereby H2A.Z depletion, as well as expression of H2A.Z.1 lysine mutants influence transcription and splicing of different gene targets, suggesting that H2A.Z.1 can impact behavior through effects on both splicing and gene expression. This is the first study to demonstrate that direct manipulation of H2A.Z post-translational modifications regulates memory, whereby acetylation adds another regulatory layer by which histone variants can fine tune higher brain functions through effects on gene expression and splicing.


Assuntos
Processamento Alternativo , Histonas , Lisina , Memória , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Histonas/metabolismo , Animais , Acetilação , Lisina/metabolismo , Memória/fisiologia , Transcrição Gênica/fisiologia , Masculino , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Camundongos Endogâmicos C57BL , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA