Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cell ; 74(5): 909-921.e6, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006538

RESUMO

Certain proteins and organelles can be selectively degraded by autophagy. Typical substrates and receptors of selective autophagy have LC3-interacting regions (LIRs) that bind to autophagosomal LC3 and GABARAP family proteins. Here, we performed a differential interactome screen using wild-type LC3B and a LIR recognition-deficient mutant and identified TEX264 as a receptor for autophagic degradation of the endoplasmic reticulum (ER-phagy). TEX264 is an ER protein with a single transmembrane domain and a LIR motif. TEX264 interacts with LC3 and GABARAP family proteins more efficiently and is expressed more ubiquitously than previously known ER-phagy receptors. ER-phagy is profoundly blocked by deletion of TEX264 alone and almost completely by additional deletion of FAM134B and CCPG1. A long intrinsically disordered region of TEX264 is required for its ER-phagy receptor function to bridge the gap between the ER and autophagosomal membranes independently of its amino acid sequence. These results suggest that TEX264 is a major ER-phagy receptor.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Retículo Endoplasmático/genética , Proteínas Intrinsicamente Desordenadas/genética , Sequência de Aminoácidos/genética , Proteínas Relacionadas à Autofagia/química , Proteínas de Ciclo Celular/genética , Retículo Endoplasmático/química , Estresse do Retículo Endoplasmático/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Membrana , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteólise
2.
Proc Natl Acad Sci U S A ; 120(32): e2206860120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523546

RESUMO

Mbtd1 (mbt domain containing 1) encodes a nuclear protein containing a zinc finger domain and four malignant brain tumor (MBT) repeats. We previously generated Mbtd1-deficient mice and found that MBTD1 is highly expressed in fetal hematopoietic stem cells (HSCs) and sustains the number and function of fetal HSCs. However, since Mbtd1-deficient mice die soon after birth possibly due to skeletal abnormalities, its role in adult hematopoiesis remains unclear. To address this issue, we generated Mbtd1 conditional knockout mice and analyzed adult hematopoietic tissues deficient in Mbtd1. We observed that the numbers of HSCs and progenitors increased and Mbtd1-deficient HSCs exhibited hyperactive cell cycle, resulting in a defective response to exogenous stresses. Mechanistically, we found that MBTD1 directly binds to the promoter region of FoxO3a, encoding a forkhead protein essential for HSC quiescence, and interacts with components of TIP60 chromatin remodeling complex and other proteins involved in HSC and other stem cell functions. Restoration of FOXO3a activity in Mbtd1-deficient HSCs in vivo rescued cell cycle and pool size abnormalities. These findings indicate that MBTD1 is a critical regulator for HSC pool size and function, mainly through the maintenance of cell cycle quiescence by FOXO3a.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Ciclo Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/metabolismo
3.
Cancer Sci ; 111(2): 658-666, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31823471

RESUMO

Metabolic reprogramming, including the Warburg effect, is a hallmark of cancer. Indeed, the diversity of cancer metabolism leads to cancer heterogeneity, but accurate assessment of metabolic properties in tumors has not yet been undertaken. Here, we performed absolute quantification of the expression levels of 113 proteins related to carbohydrate metabolism and antioxidant pathways, in stage III colorectal cancer surgical specimens from 70 patients. The Warburg effect appeared in absolute protein levels between tumor and normal mucosa specimens demonstrated. Notably, the levels of proteins associated with the tricarboxylic citric acid cycle were remarkably reduced in the malignant tumors which had relapsed after surgery and treatment with 5-fluorouracil-based adjuvant therapy. In addition, the efficacy of 5-fluorouracil also decreased in the cultured cancer cell lines with promotion of the Warburg effect. We further identified nine and eight important proteins, which are closely related to the Warburg effect, for relapse risk and 5-fluorouracil benefit, respectively, using a biomarker exploration procedure. These results provide us a clue for bridging between metabolic protein expression profiles and benefit from 5-fluorouracil adjuvant chemotherapy.


Assuntos
Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/administração & dosagem , Adulto , Idoso , Quimioterapia Adjuvante , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
4.
Biochim Biophys Acta Gen Subj ; 1862(10): 2271-2280, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30031111

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is a key player in the homeostatic response of many organisms. Of the many functions of ASK1, it is most well-known for its ability to induce canonical caspase 3-dependent apoptosis through the MAPK pathways in response to reactive oxygen species (ROS). As ASK1 is a regulator of apoptosis, its proper regulation is critical for the well-being of an organism. To date, several E3 ubiquitin ligases have been identified that are capable of degrading ASK1, signifying the importance of maintaining ASK1 expression levels during stress responses. ASK1 protein regulation under unstimulated conditions, however, is still largely unknown. Using tandem mass spectrometry, we have identified beta-transducin repeat containing protein (ß-TrCP), an E3 ubiquitin ligase, as a novel interacting partner of ASK1 that is capable of ubiquitinating and subsequently degrading ASK1 through the ubiquitin-proteasome system (UPS). This interaction requires the seven WD domains of ß-TrCP and the C-terminus of ASK1. By silencing the ß-TrCP genes, we observed a significant increase in caspase 3 activity in response to oxidative stress, which could subsequently be suppressed by silencing ASK1. These findings suggest that ß-TrCP is capable of suppressing oxidative stress-induced caspase 3-dependent apoptosis through suppression of ASK1, assisting in the organism's ability to maintain homeostasis in an unstable environment.


Assuntos
Apoptose , MAP Quinase Quinase Quinase 5/metabolismo , Estresse Oxidativo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase Quinase 5/química , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/química
5.
J Proteome Res ; 16(10): 3576-3584, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28810742

RESUMO

Wnt/ß-catenin signaling plays important roles in both ontogenesis and development. In the absence of a Wnt stimulus, ß-catenin is degraded by a multiprotein "destruction complex" that includes Axin, APC, GSK3B, and FBXW11. Although the key molecules required for transducing Wnt signals have been identified, a quantitative understanding of this pathway has been lacking. Here, we calculated the absolute number of ß-catenin destruction complexes by absolute protein quantification using LC-MS/MS. Similar amounts of destruction complex-constituting proteins and ß-catenin interacted, and the number of destruction complexes was calculated to be about 1468 molecules/cell. We demonstrated that the calculated number of destruction complexes was valid for control of the ß-catenin destruction rate under steady-state conditions. Interestingly, APC had the minimum expression level among the destruction complex components at about 2233 molecules/cell, and this number approximately corresponded to the calculated number of destruction complexes. Decreased APC expression by siRNA transfection decreased the number of destruction complexes, resulting in ß-catenin accumulation and stimulation of the transcriptional activity of T-cell factor. Taken together, our results suggest that the amount of APC expression is the rate-limiting factor for the constitution of ß-catenin destruction complexes.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Complexo de Sinalização da Axina/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Proteína Axina/genética , Complexo de Sinalização da Axina/química , Complexo de Sinalização da Axina/metabolismo , Regulação da Expressão Gênica/genética , Glicogênio Sintase Quinase 3 beta/genética , Células HCT116 , Humanos , Fosforilação , RNA Interferente Pequeno/genética , Ubiquitina-Proteína Ligases/genética , beta Catenina/isolamento & purificação , Proteínas Contendo Repetições de beta-Transducina/genética
6.
Anal Biochem ; 520: 22-26, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28048978

RESUMO

Thiol-based redox control is among the most important mechanisms for maintaining cellular redox homeostasis, with essential participation of cysteine thiols of oxidoreductases. To explore cellular redox regulatory networks, direct interactions among active cysteine thiols of oxidoreductases and their targets must be clarified. We applied a recently described thiol-ene crosslinking-based strategy, named divinyl sulfone (DVSF) method, enabling identification of new potential redox relay partners of the cytosolic oxidoreductases thioredoxin (TXN) and thioredoxin domain containing 17 (TXNDC17). Applying multiple methods, including classical substrate-trapping techniques, will increase understanding of redox regulatory mechanisms in cells.


Assuntos
Reagentes de Ligações Cruzadas/química , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Dados de Sequência Molecular , Oxirredução , Alinhamento de Sequência , Sulfonas/química , Tiorredoxinas/química , Tiorredoxinas/genética
7.
J Proteome Res ; 15(8): 2548-59, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27350002

RESUMO

The protein cysteine residue is one of the amino acids most susceptible to oxidative modifications, frequently caused by oxidative stress. Several applications have enabled cysteine-targeted proteomics analysis with simultaneous detection and quantitation. In this study, we employed a quantitative approach using a set of iodoacetyl-based cysteine reactive isobaric tags (iodoTMT) and evaluated the transient cellular oxidation ratio of free and reversibly modified cysteine thiols under DTT and hydrogen peroxide (H2O2) treatments. DTT treatment (1 mM for 5 min) reduced most cysteine thiols, irrespective of their cellular localizations. It also caused some unique oxidative shifts, including for peroxiredoxin 2 (PRDX2), uroporphyrinogen decarboxylase (UROD), and thioredoxin (TXN), proteins reportedly affected by cellular reactive oxygen species production. Modest H2O2 treatment (50 µM for 5 min) did not cause global oxidations but instead had apparently reductive effects. Moreover, with H2O2, significant oxidative shifts were observed only in redox active proteins, like PRDX2, peroxiredoxin 1 (PRDX1), TXN, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Overall, our quantitative data illustrated both H2O2- and reduction-mediated cellular responses, whereby while redox homeostasis is maintained, highly reactive thiols can potentiate the specific, rapid cellular signaling to counteract acute redox stress.


Assuntos
Cisteína/metabolismo , Homeostase , Oxirredução , Estresse Oxidativo , Células Cultivadas , Humanos , Proteômica , Compostos de Sulfidrila/metabolismo
8.
Biochem Biophys Res Commun ; 481(3-4): 232-238, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27806916

RESUMO

Molecular organization of the eukaryote chaperonin known as CCT/TRiC complex was recently clarified. Eight distinct subunits are uniquely organized, providing a favorable folding cavity for specific client proteins such as tubulin and actin. Because of its heterogeneous subunit composition, CCT complex has polarized inner faces, which may underlie an essential part of its chaperonin function. In this study, we structurally characterized the closed and open states of CCT complex, using molecular dynamics analyses. Our results showed that the inter-subunit interaction energies were asymmetrically distributed and were remodeled during conformational changes of CCT complex. In addition, exploration of redox related characteristics indicated changes in inner surface properties, including electrostatic potential, pKa and exposure of inner cysteine thiol groups, between the closed and open states. Cysteine activation events were experimentally verified by interaction analyses, using tubulin as a model substrate. Our data highlighted the importance of dynamics-based structural profiling of asymmetrically oriented chaperonin function.


Assuntos
Chaperonina com TCP-1/metabolismo , Chaperonina com TCP-1/química , Simulação por Computador , Cisteína/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Oxirredução , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Eletricidade Estática , Termodinâmica
9.
Mol Cell Biochem ; 414(1-2): 1-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26885983

RESUMO

The Sonic hedgehog (Shh) signaling pathway plays a crucial role in cell proliferation and differentiation via Patched1 (Ptc1), a 12-pass transmembrane receptor protein. The C-terminal cytoplasmic tail of Ptc1 can be cleaved to release the 7th intracellular domain (ICD7), whose function is still unclear. In this study, we found that the ICD7 fragment of Ptc1 associates with polyubiquitinated species. Using mass spectrometry, we identified a cluster of E3 ubiquitin ligase complex as novel Ptc1 ICD7-binding proteins. In particular, Ptc1 ICD7 interacted with most components of the Cullin-2 (CUL2)-based E3 ligase complex, including TCEB1 (EloC), TCEB2 (EloB), ZYG11B, and CUL2 itself. To address the significance of CUL2-based E3 ligase in Ptc1 function, we examined the effects of CUL2 knockdown on Shh-induced osteoblast differentiation in the mesenchymal stem cell line C3H10T1/2. Indeed, knockdown of CUL2 abolished the Shh-induced stem cell differentiation. These results suggest that CUL2-based E3 ligase complex may play a role in Shh- and Ptc1-dependent signaling pathways.


Assuntos
Citoplasma/metabolismo , Receptor Patched-1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Diferenciação Celular/fisiologia , Células HEK293 , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C3H , Células-Tronco/citologia , Ubiquitina/metabolismo
10.
Nucleic Acids Res ; 42(15): 10037-49, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25106868

RESUMO

Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3'-untranslated region (UTR), although the detailed mechanism underlying this stability control is unclear. Here, using a proteomic approach, we show that proteins ZFP36L1 and ZFP36L2 specifically bind to the 3'-UTR of LDLR mRNA and recruit the CCR4-NOT-deadenylase complex, resulting in mRNA destabilization. We also show that the C-terminal regions of ZFP36L1 and ZFP36L2 are directly phosphorylated by p90 ribosomal S6 kinase, a kinase downstream of ERK, resulting in dissociation of the CCR4-NOT-deadenylase complex and stabilization of LDLR mRNA. We further demonstrate that targeted disruption of the interaction between LDLR mRNA and ZFP36L1 and ZFP36L2 using antisense oligonucleotides results in upregulation of LDLR mRNA and protein. These results indicate that ZFP36L1 and ZFP36L2 regulate LDLR protein levels downstream of ERK. Our results also show the usefulness of our method for identifying critical regulators of specific RNAs and the potency of antisense oligonucleotide-based therapeutics.


Assuntos
Fator 1 de Resposta a Butirato/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Receptores de LDL/metabolismo
11.
Bioorg Med Chem ; 22(11): 3021-9, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24767819

RESUMO

Interleukin-12 (IL-12) and IL-23 are proinflammatory cytokines and therapeutic targets for inflammatory and autoimmune diseases, including inflammatory bowel diseases, psoriasis, rheumatoid arthritis, and multiple sclerosis. We describe the discovery of APY0201, a unique small molecular IL-12/23 production inhibitor, from activated macrophages and monocytes, and demonstrate ameliorated inflammation in an experimental model of colitis. Through a chemical proteomics approach using a highly sensitive direct nanoflow LC-MS/MS system and bait compounds equipped with the FLAG epitope associated regulator of PIKfyve (ArPIKfyve) was detected. Further study identified its associated protein phosphoinositide kinase, FYVE finger-containing (PIKfyve), as the target protein of APY0201, which was characterized as a potent, highly selective, ATP-competitive PIKfyve inhibitor that interrupts the conversion of phosphatidylinositol 3-phosphate (PtdIns3P) to PtdIns(3,5)P2. These results elucidate the function of PIKfyve kinase in the IL-12/23 production pathway and in IL-12/23-driven inflammatory disease pathologies to provide a compelling rationale for targeting PIKfyve kinase in inflammatory and autoimmune diseases.


Assuntos
Interleucina-12/antagonistas & inibidores , Interleucina-23/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Colite/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Descoberta de Drogas , Feminino , Humanos , Inflamação/tratamento farmacológico , Interleucina-10/deficiência , Leucócitos Mononucleares/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos SCID , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Pirimidinas/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
12.
Sci Total Environ ; 881: 163454, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37061063

RESUMO

Wastewater-based epidemiology (WBE) is a promising tool to efficiently monitor COVID-19 prevalence in a community. For WBE community surveillance, automation of the viral RNA detection process is ideal. In the present study, we achieved near full-automation of a previously established method, COPMAN (COagulation and Proteolysis method using MAgnetic beads for detection of Nucleic acids in wastewater), which was then applied to detect SARS-CoV-2 in wastewater for half a year. The automation line employed the Maholo LabDroid and an automated-pipetting device to achieve a high-throughput sample-processing capability of 576 samples per week. SARS-CoV-2 RNA was quantified with the automated COPMAN using samples collected from two wastewater treatment plants in the Sagami River basin in Japan between 1 November 2021 and 24 May 2022, when the numbers of daily reported COVID-19 cases ranged from 0 to 130.3 per 100,000 inhabitants. The automated COPMAN detected SARS-CoV-2 RNA from 81 out of 132 samples at concentrations of up to 2.8 × 105 copies/L. These concentrations showed direct correlations with subsequently reported clinical cases (5-13 days later), as determined by Pearson's and Spearman's cross-correlation analyses. To compare the results, we also conducted testing with the EPISENS-S (Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids, Ando et al., 2022), a previously reported detection method. SARS-CoV-2 RNA detected with EPISENS-S correlated with clinical cases only when using Spearman's method. Our automated COPMAN was shown to be an efficient method for timely and large-scale monitoring of viral RNA, making WBE more feasible for community surveillance.


Assuntos
COVID-19 , RNA Viral , Humanos , Águas Residuárias , SARS-CoV-2/genética , COVID-19/diagnóstico , Automação
13.
mBio ; 13(3): e0072122, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475647

RESUMO

Influenza viral particles are assembled at the plasma membrane concomitantly with Rab11a-mediated endocytic transport of viral ribonucleoprotein complexes (vRNPs). The mechanism of spatiotemporal regulation of viral budozone formation and its regulatory molecules on the endocytic vesicles remain unclear. Here, we performed a proximity-based proteomics approach for Rab11a and found that ARHGAP1, a Rho GTPase-activating protein, is transported through the Rab11a-mediated apical transport of vRNP. ARHGAP1 stabilized actin filaments in infected cells for the lateral clustering of hemagglutinin (HA) molecules, a viral surface membrane protein, to the budozone. Disruption of the HA clustering results in the production of virions with low HA content, and such virions were less resistant to protease and had enhanced antigenicity, presumably because reduced clustering of viral membrane proteins exposes hidden surfaces. Collectively, these results demonstrate that Rab11a-mediated endocytic transport of ARHGAP1 with vRNPs stimulates budozone formation to ensure the integrity of virion surface required for viral survival. IMPORTANCE The endocytic transport of the influenza viral genome triggers the clustering of viral membrane proteins at the plasma membrane to form the viral budozone. However, host factors that promote viral budozone formation in concert with viral genome transport have not been identified. Here, we found that ARHGAP1, a negative regulator of the Rho family protein, is transported with the viral genome and stabilizes actin filaments to promote budozone formation. We have shown that ARHGAP1-mediated efficient formation of viral budozone was crucial for the clustering of viral HA protein to the progeny viral particles. The clustering of HA proteins on the virions is responsible for the structural integrity of the viral particles, which promotes viral stability and viral immune evasion. This study highlights the molecular mechanism that works in concert with viral genome packaging to ensure the structural integrity of viral particles.


Assuntos
Influenza Humana , Proteínas Ativadoras de GTPase/genética , Genoma Viral , Humanos , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/fisiologia
14.
Cell Rep ; 40(11): 111349, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103833

RESUMO

Macroautophagy is a bulk degradation system in which double membrane-bound structures called autophagosomes to deliver cytosolic materials to lysosomes. Autophagy promotes cellular homeostasis by selectively recognizing and sequestering specific targets, such as damaged organelles, protein aggregates, and invading bacteria, termed selective autophagy. We previously reported a type of selective autophagy, lysophagy, which helps clear damaged lysosomes. Damaged lysosomes become ubiquitinated and recruit autophagic machinery. Proteomic studies using transfection reagent-coated beads and further evaluations reveal that a CUL4A-DDB1-WDFY1 E3 ubiquitin ligase complex is essential to initiate lysophagy and clear damaged lysosomes. Moreover, we show that LAMP2 is ubiquitinated by the CUL4A E3 ligase complex as a substrate on damaged lysosomes. These results reveal how cells selectively tag damaged lysosomes to initiate autophagy for the clearance of lysosomes.


Assuntos
Macroautofagia , Proteômica , Lisossomos/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Nat Commun ; 13(1): 7857, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543799

RESUMO

Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here we identify a UFM1 substrate, NADH-cytochrome b5 reductase 3 (CYB5R3), that localizes on the ER membrane. Ufmylation of CYB5R3 depends on the E3 components UFL1 and UFBP1 on the ER, and converts CYB5R3 into its inactive form. Ufmylated CYB5R3 is recognized by UFBP1 through the UFM1-interacting motif, which plays an important role in the further uyfmylation of CYB5R3. Ufmylated CYB5R3 is degraded in lysosomes, which depends on the autophagy-related protein Atg7- and the autophagy-adaptor protein CDK5RAP3. Mutations of CYB5R3 and genes involved in the UFM1 system cause hereditary developmental disorders, and ufmylation-defective Cyb5r3 knock-in mice exhibit microcephaly. Our results indicate that CYB5R3 ufmylation induces ER-phagy, which is indispensable for brain development.


Assuntos
Autofagia , Citocromo-B(5) Redutase , Retículo Endoplasmático , Ubiquitinas , Animais , Camundongos , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Citocromo-B(5) Redutase/química , Citocromo-B(5) Redutase/metabolismo , Retículo Endoplasmático/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitinação/fisiologia , Ubiquitinas/química , Ubiquitinas/metabolismo
16.
Sci Rep ; 11(1): 22009, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759307

RESUMO

Recent studies have shown that adipose tissue is an immunological organ. While inflammation in energy-storing white adipose tissues has been the focus of intense research, the regulatory mechanisms of inflammation in heat-producing brown adipose tissues remain largely unknown. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical regulator of brown adipocyte maturation; the PKA-ASK1-p38 axis facilitates uncoupling protein 1 (UCP1) induction cell-autonomously. Here, we show that ASK1 suppresses an innate immune pathway and contributes to maintenance of brown adipocytes. We report a novel chemical pull-down method for endogenous kinases using analog sensitive kinase allele (ASKA) technology and identify an ASK1 interactor in brown adipocytes, receptor-interacting serine/threonine-protein kinase 2 (RIPK2). ASK1 disrupts the RIPK2 signaling complex and inhibits the NOD-RIPK2 pathway to downregulate the production of inflammatory cytokines. As a potential biological significance, an in vitro model for intercellular regulation suggests that ASK1 facilitates the expression of UCP1 through the suppression of inflammatory cytokine production. In parallel to our previous report on the PKA-ASK1-p38 axis, our work raises the possibility of an auxiliary role of ASK1 in brown adipocyte maintenance through neutralizing the thermogenesis-suppressive effect of the NOD-RIPK2 pathway.


Assuntos
Adipócitos Marrons/metabolismo , MAP Quinase Quinase Quinase 5/farmacologia , Proteínas Adaptadoras de Sinalização NOD/efeitos dos fármacos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Animais , Citocinas/análise , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Camundongos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 1/efeitos dos fármacos
17.
PLoS One ; 15(10): e0232645, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33108364

RESUMO

Boosting energy expenditure by harnessing the activity of brown adipocytes is a promising strategy for combatting the global epidemic of obesity. Many studies have revealed that the ß3-adrenergic receptor agonist is a potent activator of brown adipocytes, even in humans, and PKA and p38 MAPK have been demonstrated for regulating the transcription of a wide range of critical genes such as Ucp1. We previously revealed that the PKA-ASK1-p38 axis is activated in immature brown adipocytes and contributes to functional maturation. However, the downstream mechanisms of PKA that initiate the p38 MAPK cascade are still mostly unknown in mature brown adipocytes. Here, we identified the ASK family as a crucial signaling molecule bridging PKA and MAPK in mature brown adipocytes. Mechanistically, the phosphorylation of ASK1 at threonine 99 and serine 993 is critical in PKA-dependent ASK1 activation. Additionally, PKA also activates ASK2, which contributes to MAPK regulation. These lines of evidence provide new details for tailoring a ßAR-dependent brown adipocyte activation strategy.


Assuntos
Adipócitos Marrons/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animais , Metabolismo Energético , Ativação Enzimática , Regulação da Expressão Gênica , Células HEK293 , Humanos , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Fosforilação , Serina/metabolismo , Treonina/metabolismo
18.
Neuro Oncol ; 22(2): 229-239, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31499527

RESUMO

BACKGROUND: Glioblastoma-initiating cells (GICs) comprise a tumorigenic subpopulation of cells that are resistant to radio- and chemotherapies and are responsible for cancer recurrence. The aim of this study was to identify novel compounds that specifically eradicate GICs using a high throughput drug screening approach. METHODS: We performed a cell proliferation/death-based drug screening using 10 560 independent compounds. We identified dihydroorotate dehydrogenase (DHODH) as a target protein of hit compound 10580 using ligand-fishing and mass spectrometry analysis. The medical efficacy of 10580 was investigated by in vitro cell proliferation/death and differentiation and in vivo tumorigenic assays. RESULTS: Among the effective compounds, we identified 10580, which induced cell cycle arrest, decreased the expression of stem cell factors in GICs, and prevented tumorigenesis upon oral administration without any visible side effects. Mechanistic studies revealed that 10580 decreased pyrimidine nucleotide levels and enhanced sex determining region Y-box 2 nuclear export by antagonizing the enzyme activity of DHODH, an essential enzyme for the de novo pyrimidine synthesis. CONCLUSION: In this study, we identified 10580 as a promising new drug against GICs. Given that normal tissue cells, in particular brain cells, tend to use the alternative salvage pathway for pyrimidine synthesis, our findings suggest that 10580 can be used for glioblastoma therapy without side effects.Key Points1. Chemical screening identified 10580 as a novel GIC-eliminating drug that targets DHODH, an essential enzyme for the de novo pyrimidine synthesis pathway. 2. Compound 10580 induced cell cycle arrest, apoptosis, and differentiation in GICs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nat Commun ; 11(1): 4894, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994400

RESUMO

Identification of the complete set of translated genes of viruses is important to understand viral replication and pathogenesis as well as for therapeutic approaches to control viral infection. Here, we use chemical proteomics, integrating bio-orthogonal non-canonical amino acid tagging and high-resolution mass spectrometry, to characterize the newly synthesized herpes simplex virus 1 (HSV-1) proteome in infected cells. In these infected cells, host cellular protein synthesis is shut-off, increasing the chance to preferentially detect viral proteomes. We identify nine previously cryptic orphan protein coding sequences whose translated products are expressed in HSV-1-infected cells. Functional characterization of one identified protein, designated piUL49, shows that it is critical for HSV-1 neurovirulence in vivo by regulating the activity of virally encoded dUTPase, a key enzyme that maintains accurate DNA replication. Our results demonstrate that cryptic orphan protein coding genes of HSV-1, and probably other large DNA viruses, remain to be identified.


Assuntos
Encefalite por Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Pirofosfatases/metabolismo , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Encéfalo/patologia , Encéfalo/virologia , Chlorocebus aethiops , Replicação do DNA , Modelos Animais de Doenças , Encefalite por Herpes Simples/patologia , Feminino , Genes Virais/genética , Células HEK293 , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Camundongos , Biossíntese de Proteínas , Proteômica/métodos , Células Vero , Proteínas Virais/genética , Fatores de Virulência/genética , Replicação Viral
20.
J Cell Biol ; 219(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32492081

RESUMO

In macroautophagy, membrane structures called autophagosomes engulf substrates and deliver them for lysosomal degradation. Autophagosomes enwrap a variety of targets with diverse sizes, from portions of cytosol to larger organelles. However, the mechanism by which autophagosome size is controlled remains elusive. We characterized a novel ER membrane protein, ERdj8, in mammalian cells. ERdj8 localizes to a meshwork-like ER subdomain along with phosphatidylinositol synthase (PIS) and autophagy-related (Atg) proteins. ERdj8 overexpression extended the size of the autophagosome through its DnaJ and TRX domains. ERdj8 ablation resulted in a defect in engulfing larger targets. C. elegans, in which the ERdj8 orthologue dnj-8 was knocked down, could perform autophagy on smaller mitochondria derived from the paternal lineage but not the somatic mitochondria. Thus, ERdj8 may play a critical role in autophagosome formation by providing the capacity to target substrates of diverse sizes for degradation.


Assuntos
Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Macroautofagia , Animais , Animais Geneticamente Modificados , Autofagossomos/genética , Autofagossomos/ultraestrutura , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Células COS , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Proteínas de Choque Térmico HSP40/genética , Células HeLa , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA