Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(8): 12865-12879, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157437

RESUMO

In the field of continuous-variable quantum information processing, non-Gaussian states with negative values of the Wigner function are crucial for the development of a fault-tolerant universal quantum computer. While several non-Gaussian states have been generated experimentally, none have been created using ultrashort optical wave packets, which are necessary for high-speed quantum computation, in the telecommunication wavelength band where mature optical communication technology is available. In this paper, we present the generation of non-Gaussian states on wave packets with a short 8-ps duration in the 1545.32 nm telecommunication wavelength band using photon subtraction up to three photons. We used a low-loss, quasi-single spatial mode waveguide optical parametric amplifier, a superconducting transition edge sensor, and a phase-locked pulsed homodyne measurement system to observe negative values of the Wigner function without loss correction up to three-photon subtraction. These results can be extended to the generation of more complicated non-Gaussian states and are a key technology in the pursuit of high-speed optical quantum computation.

2.
J Phys Chem A ; 123(32): 6828-6839, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304754

RESUMO

Infrared (IR) spectra of resorcinol (Rs)-Arn clusters (n = 1 and 2) have been measured in the neutral and cationic ground states (S0 and D0) by IR dip and resonance-enhanced multiphoton ionization (REMPI)-IR spectroscopy. The OH stretching vibrations in S0 keep their frequency regardless of the number of Ar atoms and the conformation of the OH groups in Rs (rotamers RsI and RsII), demonstrating that the Ar atoms are attached to the aromatic π-ring (π-bound structure) in S0. In the D0 state, the IR spectra of Rs+-Arn reflect the difference in the Rs conformations (RsI+ and RsII+). For n = 1, the IR spectra of both rotamers are almost the same as those of the corresponding monomer cations, indicating that Ar ligands essentially remain π-bonded after ionization. In contrast, the IR spectra of Rs+-Ar2 show hydrogen-bonded and free OH stretching vibrations, demonstrating that for a significant fraction of the clusters, the Ar atoms migrate from the π-bound site to the OH groups. The ionization-induced π → H migration yields are not unity for both rotamers RsI+-Ar2 and RsII+-Ar2. This result is in sharp contrast to phenol+-Ar2, in which one of the Ar atoms migrates to the OH site with 100% yield. The mechanism leading to the nonunity yield in Rs+-Ar2 is discussed in terms of the number of OH binding sites and Franck-Condon factors. The ionization excess energy dependence of the IR spectra of Rs+-Ar2 and its Rs+-Ar fragments is discussed in terms of the Ar binding energies estimated from the photoionization and photodissociation efficiency spectra.

3.
Front Bioeng Biotechnol ; 9: 789709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976979

RESUMO

A superconducting transition edge sensor (TES) is an energy-dispersive single-photon detector that distinguishes the wavelength of each incident photon from visible to near-infrared (NIR) without using spectral dispersive elements. Here, we introduce an application of the TES technique for confocal laser scanning microscopy (CLSM) as proof of our concept of ultra-sensitive and wide-band wavelength range color imaging for biological samples. As a reference sample for wide-band observation, a fixed fluorescence-labeled cell sample stained with three different color dyes was observed using our TES-based CLSM method. The three different dyes were simultaneously excited by irradiating 405 and 488 nm lasers, which were coupled using an optical fiber combiner. Even when irradiated at low powers of 80 and 120 nW with the 405 and 488 nm lasers respectively, emission signals were spectrally detected by the TES and categorized into four wavelength bands: up to 500 nm (blue), from 500 to 600 nm (green), from 600 to 800 nm (red), and from 800 to 1,200 nm (NIR). Using a single scan, an RGB color image and an NIR image of the fluorescent cell sample were successfully captured with tens of photon signals in a 40 ms exposure time for each pixel. This result demonstrates that TES is a useful wide-band spectral photon detector in the field of life sciences.

4.
Sci Rep ; 7: 45660, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374801

RESUMO

Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red-green-blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications.

5.
J Synchrotron Radiat ; 16(Pt 2): 231-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19240335

RESUMO

The application of a two-dimensional photon-counting detector based on a micro-pixel gas chamber (micro-PIC) to high-resolution small-angle X-ray scattering (SAXS), and its performance, are reported. The micro-PIC is a micro-pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the micro-PIC in SAXS experiments at SPring-8. A dynamic range of >10(5) was obtained for X-ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high-angle region in one accumulation of photons.


Assuntos
Análise de Injeção de Fluxo/instrumentação , Gases/análise , Espalhamento a Baixo Ângulo , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Difração de Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
J Phys Chem A ; 111(27): 6028-33, 2007 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-17579377

RESUMO

We have measured the OH-stretching fundamental and overtone spectra of resorcinol and hydroquinone in a supersonic jet using nonresonant ionization detected infrared/near-infrared spectroscopy. Anharmonic oscillator local mode calculations of the OH-stretching frequencies and intensities and Boltzmann populations of the stable rotamers have been calculated at the B3LYP/6-311++G(3df,2pd) level to help interpret the observed spectra. Resorcinol has three stable rotamers and in the recorded second and third OH-stretching overtone spectra there is evidence of two distinguishable rotamers. Hydroquinone has two stable rotamers; however, the OH-stretching oscillators of each rotamer are so similar in nature that even up to the fourth OH-stretching overtone the transitions coincide. These results place a limit on the ability of the jet-cooled overtone spectroscopy technique to distinguish between rotamers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA