Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 57(48): 6701-6714, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30398864

RESUMO

CYP153s are bacterial class I P450 enzymes traditionally described as alkane hydroxylases with a high terminal regioselectivity. They have been more recently shown to also catalyze hydroxylations at nonactivated carbon atoms of small heterocycles. The aim of our work was to perform an extensive characterization of this subfamily in order to deliver a toolbox of CYP153 enzymes for further development as biocatalysts. Through the screening of recently sequenced bacterial genomes, 20 CYP153s were selected, comprising 17 single monooxygenase domains and three multidomain variants, where the monooxygenase domain is naturally fused to its redox partners in a single polypeptide chain. The 20 novel variants were heterologously expressed, and their activity was screened toward octane and small heterocycles. A more extended substrate characterization was then performed on three representative candidates, and their crystal structures were unveiled and compared with those of the known CYP153A7 and CYP153A33. The tested enzymes displayed a wide range of activities, ranging from Ω and Ω-1 hydroxylations of lauric acid to indigo-generating indole modification. The comparative analysis highlighted a conserved architecture and amino acid composition of the catalytic core close to the heme, while showing a huge degree of structural plasticity and flexibility in those regions hosting the substrate recognition sites. Although dealing with this type of conformational variability adds a layer of complexity and difficulty to structure-based protein engineering, such diversity in substrate acceptance and recognition promotes the investigated CYP153s as a prime choice for tailoring designer hydroxylases.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Biotecnologia , Domínio Catalítico/genética , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons , Genes Bacterianos , Modelos Moleculares , Oxirredução , Conformação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
2.
J Fungi (Basel) ; 10(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535206

RESUMO

CRISPR (clustered regularly interspaced short palindromic repeats)-based technologies are powerful, programmable tools for site-directed genome modifications. After successful adaptation and efficient use of CRISPR-Cas9 for genome engineering in methylotrophic yeast Komagataella phaffii, a broader variety of employable endonucleases was desired to increase the experimental flexibility and to provide alternatives in case there are specific legal restrictions in industrial research due to the intellectual property rights (IPRs) of third parties. MAD7, an engineered Class 2 Type V Cas nuclease, was promoted as a royalty-free alternative for academic and industrial research and developed by Inscripta (Pleasanton, CA, USA). In this study, for the first time, CRISPR-MAD7 was used for genome editing in K. phaffii with a high gene-editing rate (up to 90%), as demonstrated for the three targeted genes coding for glycerol kinase 1 (GUT1), red fluorescence protein (DsRed), and zeocin resistance gene (Sh ble). Additionally, the genome-editing efficiencies of the CRISPR-MAD7 and CRISPR-Cas9 systems were systematically compared by targeting 259 kinase genes in K. phaffii. In this broad testing, the CRISPR-Cas9 had a higher genome-editing rate of about 65%, in comparison to the applied CRISPR-MAD7 toolbox (about 23%).

3.
N Biotechnol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960022

RESUMO

The methylotrophic yeast Komagataella phaffii is a popular host system for the pharmaceutical and biotechnological production of recombinant proteins. CRISPR-Cas9 and its derivative CRISPR interference (CRISPRi) offer a promising avenue to further enhance and exploit the full capabilities of this host. MAD7 and its catalytically inactive variant "dead" MAD7 (dMAD7) represent an interesting alternative to established CRISPR-Cas9 systems and are free to use for industrial and academic research. CRISPRi utilizing dMAD7 does not introduce double-strand breaks but only binds to the DNA to regulate gene expression. Here, we report the first use of dMAD7 in K. phaffii to regulate the expression of the enhanced green fluorescent protein (eGFP). A reduction of eGFP fluorescence level (up to 88%) was achieved in random integration experiments using dMAD7 plasmids. Integration loci/events of investigated strains were assessed through whole genome sequencing. Additionally, RNA-sequencing experiments corroborated the whole genome sequencing results and showed a significantly reduced expression of eGFP in strains containing a dMAD7 plasmid, among others. Our findings conclusively demonstrate the utility of dMAD7 in K. phaffii through successfully regulating eGFP expression.

4.
J Vis Exp ; (143)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30735181

RESUMO

Methanol is a well-established carbon source and inducer for efficient protein production employing Pichia pastoris (P. pastoris) as a host on micro-, lab and industrial scale. However, due to its toxicity and flammability, there is a desire to avoid methanol while maintaining the high productivity of P. pastoris. Small scale bioreactor cultivations (0.5-5 L working volume) are commonly used to evaluate a strain and its protein production characteristics since microscale cultivation in deep well plates can be hardly controlled or relies on expensive equipment. Furthermore, traditional protocols for the cultivation and induction of P. pastoris were established for constitutive expression or methanol induction and so far, no reliable protocols were described to screen P. pastoris expression strains with derepressible promoters in (controlled and monitored) parallel cultivations. To simplify such initial cultivations to characterize and compare new protein production strains, we established a simple shake flask cultivation system for methanol free expression that simulates bioreactor conditions including a constant slow glycerol feed and online monitoring, thereby coming closer to the real conditions in bioreactors compared to mostly applied small scale batch cultivations. To drive recombinant protein expression in P. pastoris, the carbon source repressed promoters PDC and PDF were applied. Polymer discs with embedded carbon source, releasing a constant amount of glycerol, assured a feed rate delivering the necessary energy for maintaining the promoters active while keeping the biomass generation low.


Assuntos
Reatores Biológicos , Glicerol/metabolismo , Pichia/metabolismo , Engenharia de Proteínas/métodos , Biomassa , Carbono/metabolismo , Metanol/metabolismo , Pichia/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese
5.
J Biotechnol ; 235: 139-49, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27015975

RESUMO

The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is one of the most commonly used expression systems for heterologous protein production. However the recombination machinery in P. pastoris is less effective in contrast to Saccharomyces cerevisiae, where efficient homologous recombination naturally facilitates genetic modifications. The lack of simple and efficient methods for gene disruption and specifically integrating cassettes has remained a bottleneck for strain engineering in P. pastoris. Therefore tools and methods for targeted genome modifications are of great interest. Here we report the establishment of CRISPR/Cas9 technologies for P. pastoris and demonstrate targeting efficiencies approaching 100%. However there appeared to be a narrow window of optimal conditions required for efficient CRISPR/Cas9 function for this host. We systematically tested combinations of various codon optimized DNA sequences of CAS9, different gRNA sequences, RNA Polymerase III and RNA Polymerase II promoters in combination with ribozymes for the expression of the gRNAs and RNA Polymerase II promoters for the expression of CAS9. Only 6 out of 95 constructs were functional for efficient genome editing. We used this optimized CRISPR/Cas9 system for gene disruption studies, to introduce multiplexed gene deletions and to test the targeted integration of homologous DNA cassettes. This system allows rapid, marker-less genome engineering in P. pastoris enabling unprecedented strain and metabolic engineering applications.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética , Pichia , Biologia Sintética
6.
ACS Synth Biol ; 5(2): 172-86, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26592304

RESUMO

The heterologous expression of biosynthetic pathways for pharmaceutical or fine chemical production requires suitable expression hosts and vectors. In eukaryotes, the pathway flux is typically balanced by stoichiometric fine-tuning of reaction steps by varying the transcript levels of the genes involved. Regulated (inducible) promoters are desirable to allow a separation of pathway expression from cell growth. Ideally, the promoter sequences used should not be identical to avoid loss by recombination. The methylotrophic yeast Pichia pastoris is a commonly used protein production host, and single genes have been expressed at high levels using the methanol-inducible, strong, and tightly regulated promoter of the alcohol oxidase 1 gene (PAOX1). Here, we have studied the regulation of the P. pastoris methanol utilization (MUT) pathway to identify a useful set of promoters that (i) allow high coexpression and (ii) differ in DNA sequence to increase genetic stability. We noticed a pronounced involvement of the pentose phosphate pathway (PPP) and genes involved in the defense of reactive oxygen species (ROS), providing strong promoters that, in part, even outperform PAOX1 and offer novel regulatory profiles. We have applied these tightly regulated promoters together with novel terminators as useful tools for the expression of a heterologous biosynthetic pathway. With the synthetic biology toolbox presented here, P. pastoris is now equipped with one of the largest sets of strong and co-regulated promoters of any microbe, moving it from a protein production host to a general industrial biotechnology host.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Metanol/farmacocinética , Pichia , Regiões Promotoras Genéticas , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA