Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Transplant ; 37(5): e14951, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856124

RESUMO

BACKGROUND: Increasing access and better allocation of organs in the field of transplantation is a critical problem in clinical care. Limitations exist in accurately predicting allograft discard. Potential exists for machine learning to provide a balanced assessment of the potential for an organ to be used in a transplantation procedure. METHODS: We accessed and utilized all available deceased donor United Network for Organ Sharing data from 1987 to 2020. With these data, we evaluated the performance of multiple machine learning methods for predicting organ use. The machine learning methods trialed included XGBoost, random forest, Naïve Bayes (NB), logistic regression, and fully connected feedforward neural network classifier methods. The top two methods, XGBoost and random forest, were fully developed using 10-fold cross-validation and Bayesian optimization of hyperparameters. RESULTS: The top performing model at predicting liver organ use was an XGBoost model which achieved an AUC-ROC of .925, an AUC-PR of .868, and an F1 statistic of .756. The top performing model for predicting kidney organ use classification was an XGBoost model which achieved an AUC-ROC of .952, and AUC-PR of .883, and an F1 statistic of .786. CONCLUSIONS: The XGBoost method demonstrated a significant improvement in predicting donor allograft discard for both kidney and livers in solid organ transplantation procedures. Machine learning methods are well suited to be incorporated into the clinical workflow; they can provide robust quantitative predictions and meaningful data insights for clinician consideration and transplantation decision-making.


Assuntos
Aprendizado de Máquina , Doadores de Tecidos , Humanos , Teorema de Bayes , Modelos Logísticos
2.
Ann Thorac Surg ; 115(6): 1533-1542, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35917942

RESUMO

BACKGROUND: Machine learning (ML) algorithms may enhance outcomes prediction and help guide clinical decision making. This study aimed to develop and validate a ML model that predicts postoperative outcomes and costs after cardiac surgery. METHODS: The Society of Thoracic Surgeons registry data from 4874 patients who underwent cardiac surgery (56% coronary artery bypass grafting, 42% valve surgery, 19% aortic surgery) at our institution were divided into training (80%) and testing (20%) datasets. The Extreme Gradient Boosting decision-tree ML algorithms were trained to predict three outcomes: operative mortality, major morbidity or mortality, and Medicare outlier high hospitalization cost. Algorithm performance was determined using accuracy, F1 score, and area under the precision-recall curve (AUC-PR). The ML algorithms were validated in index surgery cases with The Society of Thoracic Surgeons risk scores for mortality and major morbidities and with logistic regression and were then applied to nonindex cases. RESULTS: The ML algorithms with 25 input parameters predicted operative mortality (accuracy 95%; F1 0.31; AUC-PR 0.21), major morbidity or mortality (accuracy 71%, F1 0.47; AUC-PR 0.47), and high cost (accuracy 84%; F1 0.62; AUC-PR 0.65). Preoperative creatinine, complete blood count, patient height and weight, ventricular function, and liver dysfunction were important predictors for all outcomes. For patients undergoing nonindex cardiac operations, the ML model achieved an AUC-PR of 0.15 (95% CI, 0.05-0.32) for mortality and 0.59 (95% CI, 0.51-0.68) for major morbidity or mortality. CONCLUSIONS: The extreme gradient boosting ML algorithms can predict mortality, major morbidity, and high cost after cardiac surgery, including operations without established risk models. These ML algorithms may refine risk prediction after cardiac surgery for a wide range of procedures.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Cirurgia Torácica , Estados Unidos/epidemiologia , Humanos , Idoso , Medicare , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte de Artéria Coronária/métodos , Aprendizado de Máquina
3.
Ann Surg Open ; 3(2)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36275876

RESUMO

Background: Recipient donor matching in liver transplantation can require precise estimations of liver volume. Currently utilized demographic-based organ volume estimates are imprecise and nonspecific. Manual image organ annotation from medical imaging is effective; however, this process is cumbersome, often taking an undesirable length of time to complete. Additionally, manual organ segmentation and volume measurement incurs additional direct costs to payers for either a clinician or trained technician to complete. Deep learning-based image automatic segmentation tools are well positioned to address this clinical need. Objectives: To build a deep learning model that could accurately estimate liver volumes and create 3D organ renderings from computed tomography (CT) medical images. Methods: We trained a nnU-Net deep learning model to identify liver borders in images of the abdominal cavity. We used 151 publicly available CT scans. For each CT scan, a board-certified radiologist annotated the liver margins (ground truth annotations). We split our image dataset into training, validation, and test sets. We trained our nnU-Net model on these data to identify liver borders in 3D voxels and integrated these to reconstruct a total organ volume estimate. Results: The nnU-Net model accurately identified the border of the liver with a mean overlap accuracy of 97.5% compared with ground truth annotations. Our calculated volume estimates achieved a mean percent error of 1.92% + 1.54% on the test set. Conclusions: Precise volume estimation of livers from CT scans is accurate using a nnU-Net deep learning architecture. Appropriately deployed, a nnU-Net algorithm is accurate and quick, making it suitable for incorporation into the pretransplant clinical decision-making workflow.

4.
Ann Thorac Surg ; 114(3): 711-719, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582751

RESUMO

BACKGROUND: Machine learning may enhance prediction of outcomes after coronary artery bypass grafting (CABG). We sought to develop and validate a dynamic machine learning model to predict CABG outcomes at clinically relevant pre- and postoperative time points. METHODS: The Society of Thoracic Surgeons (STS) registry data elements from 2086 isolated CABG patients were divided into training and testing datasets and input into Extreme Gradient Boosting decision-tree machine learning algorithms. Two prediction models were developed based on data from preoperative (80 parameters) and postoperative (125 parameters) phases of care. Outcomes included operative mortality, major morbidity or mortality, high cost, and 30-day readmission. Machine learning and STS model performance were assessed using accuracy and the area under the precision-recall curve (AUC-PR). RESULTS: Preoperative machine learning models predicted mortality (accuracy, 98%; AUC-PR = 0.16; F1 = 0.24), major morbidity or mortality (accuracy, 75%; AUC-PR = 0.33; F1 = 0.42), high cost (accuracy, 83%; AUC-PR = 0.51; F1 = 0.52), and 30-day readmission (accuracy, 70%; AUC-PR = 0.47; F1 = 0.49) with high accuracy. Preoperative machine learning models performed similarly to the STS for prediction of mortality (STS AUC-PR = 0.11; P = .409) and outperformed STS for prediction of mortality or major morbidity (STS AUC-PR = 0.28; P < .001). Addition of intraoperative parameters further improved machine learning model performance for major morbidity or mortality (AUC-PR = 0.39; P < .01) and high cost (AUC-PR = 0.64; P < .01), with cross-clamp and bypass times emerging as important additive predictive parameters. CONCLUSIONS: Machine learning can predict mortality, major morbidity, high cost, and readmission after isolated CABG. Prediction based on the phase of care allows for dynamic risk assessment through the hospital course, which may benefit quality assessment and clinical decision-making.


Assuntos
Ponte de Artéria Coronária , Aprendizado de Máquina , Algoritmos , Humanos , Readmissão do Paciente , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA