Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Chem Biol ; 14(1): 36-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29131144

RESUMO

Protein complexes exhibit great diversity in protein membership, post-translational modifications and noncovalent cofactors, enabling them to function as the actuators of many important biological processes. The exposition of these molecular features using current methods lacks either throughput or molecular specificity, ultimately limiting the use of protein complexes as direct analytical targets in a wide range of applications. Here, we apply native proteomics, enabled by a multistage tandem MS approach, to characterize 125 intact endogenous complexes and 217 distinct proteoforms derived from mouse heart and human cancer cell lines in discovery mode. The native conditions preserved soluble protein-protein interactions, high-stoichiometry noncovalent cofactors, covalent modifications to cysteines, and, remarkably, superoxide ligands bound to the metal cofactor of superoxide dismutase 2. These data enable precise compositional analysis of protein complexes as they exist in the cell and demonstrate a new approach that uses MS as a bridge to structural biology.


Assuntos
Complexos Multiproteicos/química , Multimerização Proteica , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Complexos Multiproteicos/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/química , Subunidades Proteicas/genética
2.
Nat Methods ; 13(3): 237-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780093

RESUMO

Efforts to map the human protein interactome have resulted in information about thousands of multi-protein assemblies housed in public repositories, but the molecular characterization and stoichiometry of their protein subunits remains largely unknown. Here, we report a computational search strategy that supports hierarchical top-down analysis for precise identification and scoring of multi-proteoform complexes by native mass spectrometry.


Assuntos
Mineração de Dados/métodos , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Análise de Sequência de Proteína/métodos , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Modelos Químicos , Dados de Sequência Molecular , Ligação Proteica
3.
Proteomics ; 17(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28834292

RESUMO

Lymphocytes are immune cells that are critical for the maintenance of adaptive immunity. Differentiation of lymphoid progenitors yields B-, T-, and NK-cell subtypes that individually correlate with specific forms of leukemia or lymphoma. Therefore, it is imperative a precise method of cell categorization is utilized to detect differences in distinct disease states present in patients. One viable means of classification involves evaluation of the cell surface proteome of lymphoid malignancies. Specifically, this manuscript details the use of an antibody independent approach known as Cell Surface Capture Technology, to assess the N-glycoproteome of four human lymphocyte cell lines. Altogether, 404 cell surface N-glycoproteins were identified as markers for specific cell types involved in lymphocytic malignancies, including 82 N-glycoproteins that had not been previously been described for B or T cells within the Cell Surface Protein Atlas. Comparative analysis, hierarchical clustering techniques, and label-free quantitation were used to reveal proteins most informative for each cell type. Undoubtedly, the characterization of the cell surface proteome of lymphoid malignancies is a first step toward improving personalized diagnosis and treatment of leukemia and lymphoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Membrana Celular/metabolismo , Glicoproteínas/metabolismo , Leucemia/metabolismo , Linfócitos/metabolismo , Linfoma/metabolismo , Proteoma/análise , Células Cultivadas , Humanos , Leucemia/patologia , Linfócitos/citologia , Linfoma/patologia , Proteômica/métodos
4.
Nanomedicine ; 12(1): 109-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26472049

RESUMO

During studies to extend the half-life of crystalline nanoformulated antiretroviral therapy (nanoART) the mixed lineage kinase-3 inhibitor URMC-099, developed as an adjunctive neuroprotective agent was shown to facilitate antiviral responses. Long-acting ritonavir-boosted atazanavir (nanoATV/r) nanoformulations co-administered with URMC-099 reduced viral load and the numbers of HIV-1 infected CD4+ T-cells in lymphoid tissues more than either drug alone in infected humanized NOD/SCID/IL2Rγc-/- mice. The drug effects were associated with sustained ART depots. Proteomics analyses demonstrated that the antiretroviral responses were linked to affected phagolysosomal storage pathways leading to sequestration of nanoATV/r in Rab-associated recycling and late endosomes; sites associated with viral maturation. URMC-099 administered with nanoATV induced a dose-dependent reduction in HIV-1p24 and reverse transcriptase activity. This drug combination offers a unique chemical marriage for cell-based viral clearance. From the Clinical Editor: Although successful in combating HIV-1 infection, the next improvement in antiretroviral therapy (nanoART) would be to devise long acting therapy, such as intra-cellular depots. In this report, the authors described the use of nanoformulated antiretroviral therapy given together with the mixed lineage kinase-3 inhibitor URMC-099, and showed that this combination not only prolonged drug half-life, but also had better efficacy. The findings are hoped to be translated into the clinical setting in the future.


Assuntos
Sulfato de Atazanavir/administração & dosagem , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Nanocápsulas/química , Piridinas/administração & dosagem , Pirróis/administração & dosagem , Animais , Antirretrovirais/administração & dosagem , Terapia Antirretroviral de Alta Atividade/métodos , Quimioterapia Combinada/métodos , Infecções por HIV/diagnóstico , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Camundongos , Camundongos SCID , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Inibidores de Proteínas Quinases/administração & dosagem , Resultado do Tratamento , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
5.
J Proteome Res ; 13(4): 2109-19, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24564501

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection remains a worldwide epidemic, and innovative therapies to combat the virus are needed. Developing a host-oriented antiviral strategy capable of targeting the biomolecules that are directly or indirectly required for viral replication may provide advantages over traditional virus-centric approaches. We used quantitative proteomics by SWATH-MS in conjunction with bioinformatic analyses to identify host proteins, with an emphasis on nucleic acid binding and regulatory proteins, which could serve as candidates in the development of host-oriented antiretroviral strategies. Using SWATH-MS, we identified and quantified the expression of 3608 proteins in uninfected and HIV-1-infected monocyte-derived macrophages. Of these 3608 proteins, 420 were significantly altered upon HIV-1 infection. Bioinformatic analyses revealed functional enrichment for RNA binding and processing as well as transcription regulation. Our findings highlight a novel subset of proteins and processes that are involved in the host response to HIV-1 infection. In addition, we provide an original and transparent methodology for the analysis of label-free quantitative proteomics data generated by SWATH-MS that can be readily adapted to other biological systems.


Assuntos
Infecções por HIV/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Células Cultivadas , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Espectrometria de Massas , Mapas de Interação de Proteínas , Proteoma/análise , Proteínas de Ligação a RNA/análise , Fatores de Transcrição/análise
6.
J Am Soc Mass Spectrom ; 28(6): 1203-1215, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28374312

RESUMO

Fragmentation of intact proteins in the gas phase is influenced by amino acid composition, the mass and charge of precursor ions, higher order structure, and the dissociation technique used. The likelihood of fragmentation occurring between a pair of residues is referred to as the fragmentation propensity and is calculated by dividing the total number of assigned fragmentation events by the total number of possible fragmentation events for each residue pair. Here, we describe general fragmentation propensities when performing top-down mass spectrometry (TDMS) using denaturing or native electrospray ionization. A total of 5311 matched fragmentation sites were collected for 131 proteoforms that were analyzed over 165 experiments using native top-down mass spectrometry (nTDMS). These data were used to determine the fragmentation propensities for 399 residue pairs. In comparison to denatured top-down mass spectrometry (dTDMS), the fragmentation pathways occurring either N-terminal to proline or C-terminal to aspartic acid were even more enhanced in nTDMS compared with other residues. More generally, 257/399 (64%) of the fragmentation propensities were significantly altered (P ≤ 0.05) when using nTDMS compared with dTDMS, and of these, 123 were altered by 2-fold or greater. The most notable enhancements of fragmentation propensities for TDMS in native versus denatured mode occurred (1) C-terminal to aspartic acid, (2) between phenylalanine and tryptophan (F|W), and (3) between tryptophan and alanine (W|A). The fragmentation propensities presented here will be of high value in the development of tailored scoring systems used in nTDMS of both intact proteins and protein complexes. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Massas/métodos , Proteínas/química , Aminoácidos/química , Ácido Aspártico/química , Linhagem Celular , Fracionamento Químico , Cromatografia por Troca Iônica , Gases/química , Humanos , Fótons , Desnaturação Proteica , Proteínas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
7.
Proteomics Clin Appl ; 10(2): 156-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26360636

RESUMO

PURPOSE: Like all viruses, human immunodeficiency virus type 1 (HIV-1) requires host cellular factors for productive replication. Identification of these factors may lead to the development of novel cell-based inhibitors. EXPERIMENTAL DESIGN: A Strep-tag was inserted into the C-terminus of the matrix (MA) region of the HIV-1 gag gene. The resultant virus was replication competent and used to infect Jurkat T-cells. MA complexes were affinity purified with Strep-Tactin agarose. Protein quantification was performed using sequential window acquisition of all theoretical fragment ion spectra (SWATH) MS, data were log2 -transformed, and Student t-tests with Bonferroni correction used to determine statistical significance. Several candidate proteins were validated by immunoblot and investigated for their role in virus infection by siRNA knockdown assays. RESULTS: A total of 17 proteins were found to be statistically different between the infected versus uninfected and untagged control samples. X-ray repair cross-complementing protein 6 (Ku70), X-ray repair cross-complementing protein 5 (Ku80), and Y-box binding protein 1 (YB-1) were confirmed to interact with MA by immunoblot. Knockdown of two candidates, EZRIN and Y-box binding protein 1, enhanced HIV infection in vitro. CONCLUSIONS AND CLINICAL RELEVANCE: The Strep-tag allowed for the capture of viral protein complexes in the context of virus replication. Several previously described factors were identified and at least two candidate proteins were found to play a role in HIV-1 infection. These data further increase our understanding of HIV host -cell interactions.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Infecções por HIV/metabolismo , HIV/crescimento & desenvolvimento , HIV/metabolismo , Replicação Viral , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/genética , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Células Jurkat
8.
Methods Mol Biol ; 1354: 293-310, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26714720

RESUMO

Proteomics holds great promise for uncovering disease-related markers and mechanisms in human disorders. Recent advances have led to efficient, sensitive, and reproducible methods to quantitate the proteome in biological samples. Here we describe the techniques for processing, running, and analyzing samples from HIV-infected plasma or serum through quantitative mass spectroscopy.


Assuntos
Infecções por HIV/sangue , Espectrometria de Massas/métodos , Proteômica/métodos , Teorema de Bayes , Humanos , Proteoma/análise
9.
ACS Cent Sci ; 2(2): 99-108, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-27163034

RESUMO

For more than half a century the pharmaceutical industry has sifted through natural products produced by microbes, uncovering new scaffolds and fashioning them into a broad range of vital drugs. We sought a strategy to reinvigorate the discovery of natural products with distinctive structures using bacterial genome sequencing combined with metabolomics. By correlating genetic content from 178 actinomycete genomes with mass spectrometry-enabled analyses of their exported metabolomes, we paired new secondary metabolites with their biosynthetic gene clusters. We report the use of this new approach to isolate and characterize tambromycin, a new chlorinated natural product, composed of several nonstandard amino acid monomeric units, including a unique pyrrolidine-containing amino acid we name tambroline. Tambromycin shows antiproliferative activity against cancerous human B- and T-cell lines. The discovery of tambromycin via large-scale correlation of gene clusters with metabolites (a.k.a. metabologenomics) illuminates a path for structure-based discovery of natural products at a sharply increased rate.

10.
J Neuroimmunol ; 278: 162-73, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25468272

RESUMO

Neurodegeneration after traumatic brain injury is facilitated by innate and adaptive immunity and can be harnessed to affect brain repair. In mice subjected to controlled cortical impact (CCI), we show that treatment with granulocyte macrophage colony stimulating factor (GM-CSF) affects regulatory T cell numbers in the cervical lymph nodes coincident with decreased lesion volumes and increased cortical tissue sparing. This paralleled increases in neurofilament and diminished reactive microglial staining. Transcriptomic analysis showed that GM-CSF induces robust immune neuroprotective responses seven days following CCI. Together, these results support the therapeutic potential of GM-CSF for TBI.


Assuntos
Lesões Encefálicas/imunologia , Lesões Encefálicas/prevenção & controle , Córtex Cerebral/patologia , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Análise de Variância , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Citometria de Fluxo , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Proteínas do Tecido Nervoso/metabolismo , Mapas de Interação de Proteínas
11.
Virology ; 468-470: 409-420, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25240327

RESUMO

Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein-protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection.


Assuntos
Regulação da Expressão Gênica/imunologia , HIV-1/fisiologia , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Linfócitos T/metabolismo , Linfócitos T/virologia , Linhagem Celular , Humanos , Proteínas Nucleares/genética , Proteoma/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA