Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Glob Chang Biol ; 29(1): 7-9, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217697

RESUMO

Anthropogenic climate change along with the more frequent extreme weather it prompts, are having direct and indirect effects on distributions and abundance of species with consequence for community structure-especially if habitat providers are lost. Rocky shores have long been recognized as tractable experimental arenas for ecology contributing to theory. They have also emerged as important sentinel systems for tracking climate change responses of marine biodiversity and ecosystems, capitalizing on both historic broadscale surveys and time series. Combining these twin traditions is a powerful approach for better understanding and forecasting climate change impacts. Sustained observing allows extreme events to be detected and explored by in-parallel experimentation.


Assuntos
Mudança Climática , Ecossistema , Biodiversidade , Ecologia
2.
Glob Chang Biol ; 29(3): 631-647, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36394183

RESUMO

Distributional shifts in species ranges provide critical evidence of ecological responses to climate change. Assessments of climate-driven changes typically focus on broad-scale range shifts (e.g. poleward or upward), with ecological consequences at regional and local scales commonly overlooked. While these changes are informative for species presenting continuous geographic ranges, many species have discontinuous distributions-both natural (e.g. mountain or coastal species) or human-induced (e.g. species inhabiting fragmented landscapes)-where within-range changes can be significant. Here, we use an ecosystem engineer species (Sabellaria alveolata) with a naturally fragmented distribution as a case study to assess climate-driven changes in within-range occupancy across its entire global distribution. To this end, we applied landscape ecology metrics to outputs from species distribution modelling (SDM) in a novel unified framework. SDM predicted a 27.5% overall increase in the area of potentially suitable habitat under RCP 4.5 by 2050, which taken in isolation would have led to the classification of the species as a climate change winner. SDM further revealed that the latitudinal range is predicted to shrink because of decreased habitat suitability in the equatorward part of the range, not compensated by a poleward expansion. The use of landscape ecology metrics provided additional insights by identifying regions that are predicted to become increasingly fragmented in the future, potentially increasing extirpation risk by jeopardising metapopulation dynamics. This increased range fragmentation could have dramatic consequences for ecosystem structure and functioning. Importantly, the proposed framework-which brings together SDM and landscape metrics-can be widely used to study currently overlooked climate-driven changes in species internal range structure, without requiring detailed empirical knowledge of the modelled species. This approach represents an important advancement beyond predictive envelope approaches and could reveal itself as paramount for managers whose spatial scale of action usually ranges from local to regional.


Assuntos
Mudança Climática , Ecossistema , Humanos
3.
Glob Chang Biol ; 26(4): 2093-2105, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31859400

RESUMO

Changes in rocky shore community composition as responses to climatic fluctuations and anthropogenic warming can be shown by changes in average species thermal affinities. In this study, we derived thermal affinities for European Atlantic rocky intertidal species by matching their known distributions to patterns in average annual sea surface temperature. Average thermal affinities (the Community Temperature Index, CTI) tracked patterns in sea surface temperature from Portugal to Norway, but CTI for communities of macroalgae and plant species changed less than those composed of animal species. This reduced response was in line with the expectation that communities with a smaller range of thermal affinities among species would change less in composition along thermal gradients and over time. Local-scale patterns in CTI over wave exposure gradients suggested that canopy macroalgae allow species with ranges centred in cooler than local temperatures ('cold-affinity') to persist in otherwise too-warm conditions. In annual surveys of rocky shores, communities of animal species in Shetland showed a shift in dominance towards warm-affinity species ('thermophilization') with local warming from 1980 to 2018 but the community of plant and macroalgal species did not. From 2002 to 2018, communities in southwest Britain showed the reverse trend in CTI: declining average thermal affinities over a period of modest temperature decline. Despite the cooling, trends in species abundance were in line with the general mechanism of direction and magnitude of long-term trends depending on the difference between species thermal affinities and local temperatures. Cold-affinity species increased during cooling and warm-affinity ones decreased. The consistency of responses across different communities and with general expectations based on species thermal characteristics suggests strong predictive accuracy of responses of community composition to anthropogenic warming.

4.
New Phytol ; 202(4): 1157-1172, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24580117

RESUMO

Climate change has led to alterations in assemblage composition. Species of temperate macroalgae at their southern limits in the Iberian Peninsula have shown shifts in geographical range and a decline in abundance ultimately related to climate, but with the proximate factors largely unknown. We performed manipulative experiments to compare physiological responses of Fucus vesiculosus and Fucus spiralis from Portugal and Wales (UK), representing, respectively, southern and central areas of their distribution, to different intensities of solar radiation and different air temperatures. Following exposure to stressful emerged conditions, Portuguese and Welsh individuals of both fucoid species showed increased frond temperature, high desiccation levels and reduced photophysiological performance that was evident even after a 16 h recovery period, with light and temperature acting in an additive, not an interactive, manner. The level of physiological decline was influenced by geographical origin of populations and species identity, with algae from the south and those living higher on the shore coping better with stressful conditions. The negative effect of summer conditions on photophysiology may contribute to changes in fucoid abundance and distribution in southern Europe. Our results emphasise how physiological performance of geographically distinct populations can differ, which is particularly relevant when predicting responses to climate change.


Assuntos
Aclimatação , Fucus/fisiologia , Mudança Climática , Meio Ambiente , Europa (Continente) , Fucus/efeitos da radiação , Geografia , Modelos Estatísticos , Fotossíntese , Estações do Ano , Especificidade da Espécie , Estresse Fisiológico , Luz Solar , Temperatura
5.
Wellcome Open Res ; 9: 47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779153

RESUMO

We present a genome assembly from an individual Patella depressa (the black-footed limpet; Mollusca; Gastropoda; Patellogastropoda; Patellidae). The genome sequence is 683.7 megabases in span. Most of the assembly is scaffolded into 9 chromosomal pseudomolecules. Gene annotation of this assembly on Ensembl identified 20,502 protein coding genes.

6.
Wellcome Open Res ; 8: 418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994322

RESUMO

We present a genome assembly from an individual Patella vulgata (the common limpet; Mollusca; Gastropoda; Patellogastropoda; Patellidae). The genome sequence is 695.4 megabases in span. Most of the assembly is scaffolded into 9 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 14.93 kilobases in length. Gene annotation of this assembly on Ensembl identified 19,378 protein coding genes.

7.
Sci Total Environ ; 895: 164958, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331387

RESUMO

Worldwide, natural habitats are being replaced by artificial structures due to urbanisation. Planning of such modifications should strive for environmental net gain that benefits biodiversity and ecosystems. Alpha (α) and gamma (γ) diversity are often used to assess 'impact' but are insensitive metrics. We test several diversity measures across two spatial scales to compare species diversity in natural and artificial habitats. We show γ-diversity indicates equivalency in biodiversity between natural and artificial habitats, but natural habitats support greater taxon (α) and functional richness. Within-site ß-diversity was also greater in natural habitats, but among-site ß-diversity was greater in artificial habitats, contradicting the commonly held view that urban ecosystems are more biologically homogenous than natural ecosystems. This study suggests artificial habitats may in fact provide novel habitat for biodiversity, challenges the applicability of the urban homogenisation concept and highlights a significant limitation of using just α-diversity (i.e., multiple metrics are needed and recommended) for assessing environmental net gain and attaining biodiversity conservation goals.


Assuntos
Benchmarking , Ecossistema , Biodiversidade , Urbanização
8.
Mol Phylogenet Evol ; 62(1): 35-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21945534

RESUMO

Snails in the closely related trochid genera Phorcus Risso, 1826 and Osilinus Philippi, 1847 are ecologically important algal grazers in the intertidal zone of the northeastern Atlantic Ocean and Mediterranean Sea. Here we present the first complete molecular phylogeny for these genera, based on the nuclear 28S rRNA gene and the mitochondrial 16S rRNA and COI genes, and show that the current classification is erroneous. We recognize nine species in a single genus, Phorcus: estimated by BEAST analysis, this arose 30 (± 10) Ma; it consists of two subgenera, Phorcus and Osilinus, which we estimate diverged 14 (± 4.5) Ma. Osilinus kotschyi, from the Arabian and Red Seas, is not closely related and is tentatively referred to Priotrochus Fischer, 1879. Our phylogeny allows us to address biogeographical questions concerning the origins of the Mediterranean and Macaronesian species of this group. The former appear to have evolved from Atlantic ancestors that invaded the Mediterranean on several occasions after the Zanclean Flood, which ended the Messinian Salinity Crisis 5.3 Ma; whereas the latter arose from several colonizations of mainland Atlantic ancestors within the last 3 (± 1.5) Ma.


Assuntos
Gastrópodes/genética , Filogenia , Animais , Oceano Atlântico , Teorema de Bayes , Complexo IV da Cadeia de Transporte de Elétrons/genética , Gastrópodes/classificação , Especiação Genética , Variação Genética , Mar Mediterrâneo , Dados de Sequência Molecular , Filogeografia , RNA Ribossômico/genética , Análise de Sequência de DNA , Movimentos da Água
10.
Mar Environ Res ; 169: 105344, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34015675

RESUMO

Data that can be used to monitor biodiversity through time are essential for conservation and management. The reef-forming worm, Sabellaria alveolata (L. 1767) is currently classed as 'Data Deficient' due to an imbalance in the spread of data on its distribution. Little is known about the distribution of this species around Ireland. Using data archaeology, we collated past and present distribution records and discovered that S. alveolata has a discontinuous distribution with large gaps between populations. Many regions lack data and should be targeted for sampling. Biodiversity surveys revealed that S. alveolata supported diverse epibiotic algal communities. Retrograding (declining) reefs supported greater infaunal diversity than prograding (growing) reefs or sand, suggesting that S. alveolata is a dynamic ecosystem engineer that has a lasting legacy effect. Similar research should be carried out for other Data Deficient species, habitats and regions. Such data are invaluable resources for management and conservation.


Assuntos
Alveolados , Poliquetos , Animais , Biodiversidade , Conservação dos Recursos Naturais , Recifes de Corais , Ecossistema , Irlanda
11.
Mar Pollut Bull ; 156: 111226, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510372

RESUMO

Dokdo's high marine biodiversity has received worldwide attention recently. A total of 578 macrozoobenthos are recorded since the 1960s, but ecology of Dokdo's fauna is unknown. We monitored Dokdo's subtidal macrozoobenthos for 5 years in 2013-17, in the present study. Five stations representing three subtidal habitats were monitored; 1) oceanic plateau, 2) coastal terrace, and 3) island wharf. In total, 13,664 individuals belonging to 141 taxa were recorded during the survey. The number of species and density varied greatly among stations without distinct year-round variation. Faunal compositions significantly differed in time and space, reflecting varied faunal adaptations in a harsh environment. Whilst, temporal stability in faunal assemblages was evidenced for some dominant or cosmopolitan taxa. High spatial heterogeneity reflects site-specific oceanographic conditions. Meantime, sea-surface temperature and wave action were associated with year-round faunal compositions. Overall, the Dokdo's macrozoobenthos significantly contribute to marine biodiversity of the East Sea.


Assuntos
Biodiversidade , Ecossistema , Ilhas , Oceanos e Mares , República da Coreia
12.
Mar Pollut Bull ; 154: 111082, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319910

RESUMO

Habitat modification coupled with the spread of non-native species (NNS) are among the top threats to marine biodiversity globally. Species are known to be transported to new locations via international shipping and secondarily spread via regional vessels and artificial structures. Rapid Assessment Surveys (RAS) combining quantitative and semi-quantitative methods compared NNS richness and assemblage composition on intertidal natural rocky shores and artificial structures in harbours in different regions along the south coast of England. Quantitative data showed that artificial habitats supported higher richness than natural habitats, while semi-quantitative data found no difference in richness among habitat types. This result was attributed to additional species found in rock pools during searches of complex microhabitats in natural habitats. Assemblages on artificial structures differed among regions, with regions and harbours with greater numbers of vessels supporting greater richness. Results highlight the importance of shipping and artificial structures for NNS introduction and spread.


Assuntos
Biodiversidade , Espécies Introduzidas , Ecossistema , Inglaterra
13.
Ecology ; 90(5): 1242-54, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19537545

RESUMO

Determination of the pattern of variation in population abundance among spatial scales offers much insight into the potential regulating factors. Here we offer a method of quantifying spatial variance on a range of scales derived by sampling of irregularly spaced sites along complex coastlines. We use it to determine whether the nature of spatial variance depends on the trophic level or the mode of dispersal of the species involved and the role of the complexity of the underlying habitat. A least-cost distance model was used to determine distances by sea between all pairs of sites. Ordination of this distance matrix using multidimensional scaling allowed estimation of variance components with hierarchical ANOVA at nested spatial scales using spatial windows. By repeatedly moving these spatial windows and using a second set of spatial scales, average variance scale functions were derived for 50+ species in the UK rocky intertidal. Variance spectra for most species were well described by the inverse power law (1/fbeta) for noise spectra, with values for the exponent ranging from 0 to 1.1. At higher trophic levels (herbivores and carnivores), those species with planktonic dispersal had significantly higher beta values, indicating greater large- than small-scale variability, as did those on simpler coastlines (southwestern England and Wales vs. western Scotland). Average abundance and proportional incidence of species had the strongest influence on p values, with those of intermediate abundance and incidence having much greater large-scale variance (beta approximately 0.5) than rare or ubiquitous species (beta approximately 0).


Assuntos
Cadeia Alimentar , Animais , Demografia , Eucariotos , Oceanos e Mares , Ondas de Maré , Fatores de Tempo , Reino Unido
14.
Adv Mar Biol ; 56: 213-73, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19895976

RESUMO

During the course of the last century, populations of Atlantic cod Gadus morhua L. have undergone dramatic declines in abundance across their biogeographic range, leading to debate about the relative roles of climatic warming and overfishing in driving these changes. In this chapter, we describe the geographic distributions of this important predator of North Atlantic ecosystems and document extensive evidence for limitations of spatial movement and local adaptation from population genetic markers and electronic tagging. Taken together, this evidence demonstrates that knowledge of spatial population ecology is critical for evaluating the effects of climate change and commercial harvesting. To explore the possible effects of climate change on cod, we first describe thermal influences on individual physiology, growth, activity and maturation. We then evaluate evidence that temperature has influenced population-level processes including direct effects on recruitment through enhanced growth and activity, and indirect effects through changes to larval food resources. Although thermal regimes clearly define the biogeographic range of the species, and strongly influence many aspects of cod biology, the evidence that population declines across the North Atlantic are strongly linked to fishing activity is now overwhelming. Although there is considerable concern about low spawning stock biomasses, high levels of fishing activity continues in many areas. Even with reduced fishing effort, the potential for recovery from low abundance may be compromised by unfavourable climate and Allee effects. Current stock assessment and management approaches are reviewed, alongside newly advocated methods for monitoring stock status and recovery. However, it remains uncertain whether the rebuilding of cod to historic population sizes and demographic structures will be possible in a warmer North Atlantic.


Assuntos
Mudança Climática , Ecossistema , Pesqueiros , Gadus morhua/fisiologia , Adaptação Fisiológica , Animais , Oceano Atlântico , Comércio , Monitoramento Ambiental , Dinâmica Populacional , Reprodução/fisiologia , Temperatura , Fatores de Tempo
15.
Sci Rep ; 9(1): 8816, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217462

RESUMO

Contemporary coexistence theory provides a framework for predicting invasiveness and impact of Invasive Non-Native Species (INNS) by incorporating differences in niche and fitness between INNS and co-occurring native species. The widespread invasive kelp Undaria pinnatifida is considered a high-risk INNS, although a robust evidence base regarding its invasiveness and impact is lacking in many regions. Invaded macroalgal canopies at nine coastal sites in the southwest UK were studied over three years to discern whether Undaria is coexisting or competing with native canopy-forming species across different habitat types. Spatial, temporal and depth-related trends in species distributions and abundance were recorded within intertidal and subtidal rocky reef as well as on marina pontoons. A primary succession experiment also examined competitive interactions between species. In rocky reef habitats, Undaria had lower fitness compared to long-lived native perennials, but was able to coexist due to niche dissimilarity between species. In contrast, Undaria was likely to be competing with short-lived native annuals on rocky reef due to large niche overlap and similar fitness. In marina habitats, Undaria dominated over all other canopy formers due to low niche diversification and higher fitness. Generalisations on INNS impact cannot be made across habitats or species, without considering many abiotic factors and biotic interactions.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Espécies Introduzidas , Alga Marinha/fisiologia , Biomassa , Recifes de Corais , Geografia , Modelos Lineares , Simbiose , Undaria/fisiologia , Reino Unido
16.
Ecology ; 89(2): 298-305, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18409418

RESUMO

The link between biodiversity and ecosystem functioning is now well established, but the challenge remains to develop a mechanistic understanding of observed effects. Predator-prey interactions provide an opportunity to examine the role of resource partitioning, thought to be a principal mediator of biodiversity-function relationships. To date, interactions between multiple predators and their prey have typically been investigated in simplified agricultural systems with limited scope for resource partitioning. Thus there remains a dearth of studies examining the functional consequences of predator richness in diverse food webs. Here, we manipulated a species-rich intertidal food web, crossing predator diversity with total predator density, to simultaneously examine the independent and interactive effects of diversity and density on the efficiency of secondary resource capture. The effect of predator diversity was only detectable at high predator densities where competitive interactions between individual predators were magnified; the rate of resource capture within the species mixture more than doubled that of the best-performing single species. Direct observation of species-specific resource use in monoculture, as quantified by patterns of prey consumption, provided clear evidence that species occupied distinct functional niches, suggesting a mechanistic explanation of the observed diversity effect.


Assuntos
Biodiversidade , Braquiúros/fisiologia , Ecossistema , Cadeia Alimentar , Comportamento Predatório/fisiologia , Animais , Biomassa , Braquiúros/crescimento & desenvolvimento , Densidade Demográfica , Dinâmica Populacional , Crescimento Demográfico , Especificidade da Espécie
17.
Ecology ; 89(11 Suppl): S3-23, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19097481

RESUMO

The contrasting histories of the western and eastern shores of the North Atlantic Ocean provide an excellent opportunity to consider the implications of past events for present ecological processes and the functioning of marine ecosystems. Similarities and differences in assemblage composition have been driven by large-scale events, such as the trans-Arctic interchange, which has shaped the species pool, and cycles of glaciation, which have determined phases of local or regional extinction and colonization. More recently, anthropogenically induced invasions and local extinctions have significantly altered biogeographic distributions. Here we consider for both hard and soft substrata how the presence or absence of key taxa influences the outcomes of trophic and other biological interactions, and evaluate the consequences for community structure and ecosystem functioning. On intertidal hard substratum shores, biodiversity of epilithic microphagous grazers differs across latitudinal and longitudinal scales. Diversity is high in southern Europe but declines to the north and across the Atlantic. Lower diversity and the absence of patellid limpets in Iceland and the northwest Atlantic compared to Europe result in differences in consumer pressure, and an apparent contrast in the importance of herbivory vs. competitive interactions and predation pressure as community structuring processes. Interestingly, despite differences in "process," community patterns are remarkably similar between the east and west. On soft sediment shores, there are conspicuous geographic differences in importance of bioturbators and large digging predators. Hemichordates can be abundant and important infaunal bioturbators in the western Atlantic, but they generally play a much reduced role in the eastern Atlantic. In addition, the number and diversity of digging predators on western Atlantic shores is high; the horseshoe crab, swimming portunid crabs, large whelks, excavating waterfowl, and an abundance of skates and rays exert intense predation pressure and associated biogenic disturbance to sediments. In Europe, except for excavating waterfowl these taxa are rare or absent. Thus, the importance of large, biological agents of disturbance is lower on European shores as a consequence of both recent anthropogenic pressure and natural processes over larger time scales. Consideration of key structuring taxa over the Atlantic shows that human-mediated transport has had considerable influence. Faunas on both sides of the Atlantic are becoming more similar to the point that some of the key differences in assemblage composition and hence community organization have blurred. Recent introductions as well as planned experimental manipulations provide the opportunity to understand the role of species identity in determining community structure and ecosystem functioning over large spatial scales; the North Atlantic may be an ideal test system to explore these areas.


Assuntos
Biodiversidade , Clima , Ecossistema , Animais , Oceano Atlântico , Evolução Biológica , Conservação dos Recursos Naturais , Demografia , Meio Ambiente , Cadeia Alimentar , Comportamento Predatório , Especificidade da Espécie
18.
Mar Environ Res ; 140: 322-331, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29983191

RESUMO

Frameworks designed to prioritise the management of invasive non-native species (INNS) must consider many factors, including their impacts on native biodiversity, ecosystem services, and human health. Management feasibility should also be foremost in any prioritisation process, but is often overlooked, particularly in the marine environment. The Asian kelp, Undaria pinnatifida, is one of the most cosmopolitan marine INNS worldwide and recognised as a priority species for monitoring in the UK and elsewhere. Here, experimental monthly removals of Undaria (from 0.2 m2 patches of floating pontoon) were conducted at two marinas to investigate their influence on recruitment dynamics and the potential implications for management feasibility. Over the 18-month experiment there was no consistent reduction in Undaria recruitment following removals. Cleaning of pontoon surfaces (i.e. removal of all biota) led to significant short-term reductions in recruitment but caused a temporal shift in normal recruitment patterns. Non-selective removal (i.e. all macroalgae) generally promoted recruitment, while selective removal (i.e. Undaria only) had some limited success in reducing overall recruitment. The varied results indicate that the feasibility of limiting Undaria is likely to be very low at sites with established populations and high propagule pressure. However, where there are new incursions, a mixture of cleaning of invaded surfaces prior to normal periods of peak recruitment followed by selective removal may have some potential in limiting Undaria populations within these sites. Multi-factorial experimental manipulations such as this are useful tools for gathering quantitative evidence to support the prioritisation of management measures for marine INNS.


Assuntos
Conservação dos Recursos Naturais , Espécies Introduzidas , Undaria , Ecossistema , Recuperação e Remediação Ambiental , Kelp , Alga Marinha
19.
Ecol Evol ; 7(16): 6125-6140, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28861219

RESUMO

The uptake of natural living resources for human consumption has triggered serious changes in the balance of ecosystems. In the archipelagos of Macaronesia (NE Atlantic), limpets have been extensively exploited probably since islands were first colonized. This has led to profound consequences in the dynamics of rocky shore communities. The Patella candei complex includes various subspecies of limpets that are ascribed to a particular archipelago and has been the focus of several taxonomic surveys without much agreement. Under a conservational perspective, we apply morphometric and genetic analyses to test subspecies boundaries in P. candei and to evaluate its current population connectivity throughout Macaronesia (Azores, Madeira, and Canaries). A highly significant genetic break between archipelagos following isolation by distance was detected (FST = 0.369, p < .001). Contrastingly, significant genetic differentiation among islands (i.e., Azores) was absent possibly indicating ongoing gene flow via larval exchange between populations. Significant shell-shape differences among archipelagos were also detected using both distance-based and geometric morphometric analyses. Adaptive processes associated with niche differentiation and strong barriers to gene flow among archipelagos may be the mechanisms underlying P. candei diversification in Macaronesia. Under the very probable assumption that populations of P. candei from each archipelago are geographically and/or ecologically isolated populations, the various subspecies within the P. candei complex may be best thought of as true species using the denomination: P. candei in Selvagens, Patella gomesii in Azores, Patella ordinaria in Madeira, and Patella crenata for Canaries. This would be in agreement with stock delimitation and units of conservation of P. candei sensu latu along Macaronesia.

20.
Ecol Evol ; 7(10): 3616-3622, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28515897

RESUMO

Exploitation of organisms can prompt the reduction in the number and size of target populations consequently affecting reproductive output and replenishment. Here, we investigated the effects of exploitation on the population structure of a protandrous patellid limpet, Patella aspera, an overexploited Macaronesian endemic. Timed dives were used to collect animals across eleven islands of Macaronesia. Individuals were inspected for sex, size, and gonad stage. Using catch effort (time per person) per island coastal perimeter as a surrogate for exploitation intensity, we found that limpet abundance (CPUE) and mean size tended to decrease with exploitation intensity. When considering the sex of animals separately, the size of the largest male, but not females, decreased with exploitation. In contrast, the size of the smallest male remained relatively consistent, whereas the size of the smallest female decreased significantly with exploitation. As exploitation is mostly targeting larger individuals, results suggest that males are compensating the removal of larger females, by undergoing sex change at smaller and presumably earlier sizes. These results have wider implications for the conservation of P. aspera, as a reduction in female size will likely affect the numbers of oocytes produced, hence fecundity. Regulations promoting the protection of the larger-sized animals should be enforced to safeguard the replenishment of the population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA