Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682565

RESUMO

Sallow and/or dull skin appearance is greatly attributable to the yellow components of skin tone. Bilirubin is a yellow chromophore known to be made in the liver and/or spleen and is transported throughout the body via the blood stream. Recent publications suggest bilirubin may be synthesized in other cells/organs, including the skin. We found human keratinocytes express the transcripts involved in bilirubin biosynthesis. In parallel, we also found human keratinocytes could indeed synthesize bilirubin in monolayer keratinocytes and in a 3D human skin-equivalent model. The synthesized amount was substantial enough to contribute to skin yellowness. In addition, oxidative stress enhanced bilirubin production. Using UnaG, a protein that forms a fluorescent species upon binding to bilirubin, we also visualized the intracellular expression of bilirubin in keratinocytes. Finally, we screened a compound library and discovered that the sucrose laurate/dilaurate (SDL) combination significantly reduced bilirubin levels, as well as bilirubin-mediated yellowness. In conclusion, bilirubin is indeed synthesized in epidermal keratinocytes and can be upregulated by oxidative stress, which could contribute to chronic or transient yellow skin tone appearance. Application of SDL diminishes bilirubin generation and may be a potential solution to mitigate yellowish and/or dull skin appearance.


Assuntos
Bilirrubina , Queratinócitos , Bilirrubina/metabolismo , Bilirrubina/farmacologia , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Pele/metabolismo , Sacarose/análogos & derivados
2.
New Phytol ; 231(1): 152-164, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864269

RESUMO

We have recently characterised NET2A as a pollen-specific actin-binding protein that binds F-actin at the plasma membrane of growing pollen tubes. However, the role of NET2 proteins in pollen development and fertilisation have yet to be elucidated. To further characterise the role of Arabidopsis NET2 proteins in pollen development and fertilisation, we analysed the subcellular localisation of NET2A over the course of pollen grain development and investigated the role of the NET2 family using net2 loss-of-function mutants. We observed NET2A to localise to the F-actin cytoskeleton in developing pollen grains as it underwent striking structural reorganisations at specific stages of development and during germination and pollen tube growth. Furthermore, net2 loss-of-function mutants exhibited striking morphological defects in the early stages of pollen tube growth, arising from frequent changes to pollen tube growth trajectory. We observed defects in the cortical actin cytoskeleton and actin-driven subcellular processes in net2 mutant pollen tubes. We demonstrate that NET2 proteins are essential for normal actin-driven pollen development highlighting an important role for the NET2 family members in regulating pollen tube growth during fertilisation.


Assuntos
Citoesqueleto de Actina , Proteínas de Arabidopsis , Arabidopsis/genética , Tubo Polínico/crescimento & desenvolvimento , Actinas , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Polinização
3.
EMBO Rep ; 20(8): e47182, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286648

RESUMO

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Proteínas de Membrana/genética , Plasmodesmos/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Glicosiltransferases/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/deficiência , Fosfolipídeos/metabolismo , Células Vegetais , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Plasmodesmos/ultraestrutura , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Proteína Vermelha Fluorescente
4.
New Phytol ; 223(3): 1307-1318, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980545

RESUMO

At high temperatures, isoprene-emitting plants display a higher photosynthetic rate and a lower nonphotochemical quenching (NPQ) compared with nonemitting plants. The mechanism of this phenomenon, which may be very important under current climate warming, is still elusive. NPQ was dissected into its components, and chlorophyll fluorescence lifetime imaging microscopy (FLIM) was used to analyse the dynamics of excited chlorophyll relaxation in isoprene-emitting and nonemitting plants. Thylakoid membrane stiffness was also measured using atomic force microscope (AFM) to identify a possible mode of action of isoprene in improving photochemical efficiency and photosynthetic stability. We show that, when compared with nonemitters, isoprene-emitting tobacco plants exposed at high temperatures display a reduced increase of the NPQ energy-dependent component (qE) and stable (1) chlorophyll fluorescence lifetime; (2) amplitude of the fluorescence decay components; and (3) thylakoid membrane stiffness. Our study shows for the first time that isoprene maintains PSII stability at high temperatures by preventing the modifications of the surrounding environment, namely providing a more steady and homogeneous distribution of the light-absorbing centres and a stable thylakoid membrane stiffness. Isoprene photoprotects leaves with a mechanism alternative to NPQ, enabling plants to maintain a high photosynthetic rate at rising temperatures.


Assuntos
Butadienos/metabolismo , Hemiterpenos/metabolismo , Temperatura Alta , Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Fluorescência , Fotossíntese , Estabilidade Proteica
5.
Exp Dermatol ; 28(7): 862-866, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31021445

RESUMO

The biomechanical properties of the collagenous dermal matrix are well described but responses to mechanical force by the hair follicles have not been characterised so far. We applied a pulling force on hair follicles to visualise and quantify changes in the keratin-14 and involucrin-positive cell layers of the follicles using nuclear dimensions as an indicator of tissue deformation. Moreover, we used second-harmonic generation imaging to visualise changes in the dermal collagen. We report how the anatomical regions of the follicle respond to the force. Nuclei of the isthmus region were most affected. The nuclei in both K14-positive outer root sheath cells and in involucrin-positive cells were significantly compressed, whereas the response in the infundibulum and suprabulbar regions was more variable. The deformation of the nuclei did not correlate with lamin A/C expression. The changes in the collagenous matrix were distinct at different depths of the dermis as collagen fibrils were compressed closer to each other in the region adjacent to upper suprabulbar follicle and pulled apart near the infundibulum. Thus, the responses to the force are locally defined and the cells in the permanent and cycling parts of the follicle behave differently.


Assuntos
Colágeno/química , Derme/fisiologia , Folículo Piloso/fisiologia , Hipófise/fisiologia , Fenômenos Fisiológicos da Pele , Estresse Mecânico , Fenômenos Biomecânicos , Núcleo Celular/metabolismo , Humanos , Imageamento Tridimensional , Queratina-14/metabolismo , Precursores de Proteínas/metabolismo
6.
J Cosmet Sci ; 69(5): 347-356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30767883

RESUMO

Saturated and unsaturated fatty acids make up 85% of the total hair lipid content and are found in the cuticle and cortical cell membrane complex. Although these lipids only make up 2-6% of the hair's overall weight, they play a crucial role in keeping hair healthy, influencing shine, feel, manageability, and strength. The objective of this work was to understand the mechanisms of how these lipids are lost on exposure to external stressors, such as chemical treatments, washing, and UV exposure and to understand how their loss impacts hair strength. The experimental approach was to measure these lipids and oxidation products, lipid peroxides (LPOs) and correlate their loss with fatigue strength measurements. The results show lipids are lost over time by washing, exposure to chemical treatments, such as coloring, and environmental insults, such as UV, and it was confirmed that a mechanism of degradation is via oxidation of unsaturated lipids to form LPOs. In addition, it was shown that replenishment of these lipids is possible by incorporating lipids, such as fatty alcohols (FaOHs), into a gel network with anionic surfactants to create a delivery system that can efficiently penetrate FaOHs into hair and increase internal strength as measured by fatigue.


Assuntos
Cabelo , Lipídeos , Oxirredução , Tensoativos
7.
New Phytol ; 216(4): 1170-1180, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940405

RESUMO

During fertilization, Pollen Receptor-Like Kinases (PRKs) control pollen tube growth through the pistil in response to extracellular signals, and regulate the actin cytoskeleton at the tube apex to drive tip growth. We investigated a novel link between membrane-integral PRKs and the actin cytoskeleton, mediated through interactions between PRKs and NET2A; a pollen-specific member of the NETWORKED superfamily of actin-binding proteins. We characterize NET2A as a novel actin-associated protein that localizes to punctae at the plasma membrane of the pollen tube shank, which are stably associated with cortical longitudinal actin cables. NET2A was demonstrated to interact specifically with PRK4 and PRK5 in Nicotiana benthamiana transient expression assays, and associated at discreet foci at the shank membrane of Arabidopsis pollen tubes. Our data indicate that NET2A is recruited to the plasma membrane by PRK4 and PRK5, and that PRK kinase activity is important in facilitating its interaction with NET2A. We conclude that NET2A-PRK interactions mediate discreet sites of stable interactions between the cortical longitudinal actin cables and plasma membrane in the shank region of growing pollen tubes, which we have termed Actin-Membrane Contact Sites (AMCSs). Interactions between PRKs and NET2A implicate a role for NET2A in signal transduction to the actin cytoskeleton during fertilization.


Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Tubo Polínico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana
8.
New Phytol ; 210(4): 1311-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27159525

RESUMO

The endoplasmic reticulum (ER) is connected to the plasma membrane (PM) through the plant-specific NETWORKED protein, NET3C, and phylogenetically conserved vesicle-associated membrane protein-associated proteins (VAPs). Ten VAP homologues (VAP27-1 to 27-10) can be identified in the Arabidopsis genome and can be divided into three clades. Representative members from each clade were tagged with fluorescent protein and expressed in Nicotiana benthamiana. Proteins from clades I and III localized to the ER as well as to ER/PM contact sites (EPCSs), whereas proteins from clade II were found only at the PM. Some of the VAP27-labelled EPCSs localized to plasmodesmata, and we show that the mobility of VAP27 at EPCSs is influenced by the cell wall. EPCSs closely associate with the cytoskeleton, but their structure is unaffected when the cytoskeleton is removed. VAP27-labelled EPCSs are found in most cell types in Arabidopsis, with the exception of cells in early trichome development. Arabidopsis plants expressing VAP27-GFP fusions exhibit pleiotropic phenotypes, including defects in root hair morphogenesis. A similar effect is also observed in plants expressing VAP27 RNAi. Taken together, these data indicate that VAP27 proteins used at EPCSs are essential for normal ER-cytoskeleton interaction and for plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas R-SNARE/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Genes Reporter , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Domínios Proteicos , Proteínas R-SNARE/genética , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/ultraestrutura
9.
Methods Mol Biol ; 2604: 337-352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773248

RESUMO

The cytoskeleton is a dynamic and diverse subcellular filament network, and as such microscopy is an essential technology to enable researchers to study and characterize these systems. Microscopy has a long history of observing the plant world not least as the subject where Robert Hooke coined the term "cell" in his publication Micrographia. From early observations of plant morphology to today's advanced super-resolution technologies, light microscopy is the indispensable tool for the plant cell biologist. In this mini review, we will discuss some of the major modalities used to examine the plant cytoskeleton and the theory behind them.


Assuntos
Citoesqueleto , Microscopia , Microtúbulos , Plantas , Tecnologia , Microscopia Confocal
10.
Methods Mol Biol ; 2604: 127-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773230

RESUMO

Expansion microscopy (ExM) achieves super-resolution imaging without the need for sophisticated super-resolution microscopy hardware through a combination of physical and optical magnification. Samples are fixed, stained, and embedded in a swellable gel. Following cross-linking of fluorophores to the gel matrix, the components of the sample are digested away and the gel expanded in water. Labeled objects which are too close to be resolved by diffraction-limited microscopy are moved far enough apart that these can now be resolved as individual objects on a standard confocal. Originally developed for animal cells and tissues, ExM for plants requires the additional consideration of cell wall digestion. Super-resolution can be limited in plants due to the size of cells, light scattering of tissues, and variations in refractive index. By removing the components which cause these limitations, ExM opens up the possibility of super-resolution at depth within plant tissues for the first time. Here we describe our method for PlantExM which is optimized for cytoskeleton resolution, which, when also coupled with compatible optical super-resolution technologies, can produce images of the plant cytoskeleton in unprecedented detail.


Assuntos
Microtúbulos , Células Vegetais , Animais , Microscopia de Fluorescência/métodos
11.
Nat Commun ; 14(1): 5848, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730720

RESUMO

Members of the NETWORKED (NET) family are involved in actin-membrane interactions. Here we show that two members of the NET family, NET4A and NET4B, are essential for normal guard cell actin reorganization, which is a process critical for stomatal closure in plant immunity. NET4 proteins interact with F-actin and with members of the Rab7 GTPase RABG3 family through two distinct domains, allowing for simultaneous localization to actin filaments and the tonoplast. NET4 proteins interact with GTP-bound, active RABG3 members, suggesting their function being downstream effectors. We also show that RABG3b is critical for stomatal closure induced by microbial patterns. Taken together, we conclude that the actin cytoskeletal remodelling during stomatal closure involves a molecular link between actin filaments and the tonoplast, which is mediated by the NET4-RABG3b interaction. We propose that stomatal closure to microbial patterns involves the coordinated action of immune-triggered osmotic changes and actin cytoskeletal remodelling likely driving compact vacuolar morphologies.


Assuntos
Actinas , Vacúolos , Citoesqueleto de Actina , Fenômenos Fisiológicos Celulares , Osmose
12.
Nat Cell Biol ; 4(9): 711-4, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12198497

RESUMO

MOR1 is a member of the MAP215 family of microtubule-associated proteins and is required to establish interphase arrays of cortical microtubules in plant cells. Here we show that MOR1 binds microtubules in vivo, localizing to both cortical microtubules and to areas of overlapping microtubules in the phragmoplast. Genetic complementation of the cytokinesis-defective gemini pollen 1-1 (gem1-1) mutation with MOR1 shows that MOR1 (which is synonymous with the protein GEM1) is essential in cytokinesis. Phenotypic analysis of gem1-1 and gem1-2, which contains a T-DNA insertion, confirm that MOR1/GEM1 is essential for regular patterns of cytokinesis. Both the gem1-1 and gem1-2 mutations cause the truncation of the MOR1/GEM1 protein. In addition, the carboxy-terminal domain of the protein, which is absent in both mutants, binds microtubules in vitro. Our data show that MOR1/GEM1 has an essential role in the cytokinetic phragmoplast.


Assuntos
Proteínas de Arabidopsis/fisiologia , Divisão Celular/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Animais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Encéfalo/metabolismo , DNA de Plantas/genética , Genes de Plantas , Teste de Complementação Genética , Técnicas In Vitro , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Proteínas de Plantas/genética , Suínos
13.
J Histochem Cytochem ; 66(12): 903-921, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29969056

RESUMO

For ultrafast fixation of biological samples to avoid artifacts, high-pressure freezing (HPF) followed by freeze substitution (FS) is preferred over chemical fixation at room temperature. After HPF, samples are maintained at low temperature during dehydration and fixation, while avoiding damaging recrystallization. This is a notoriously slow process. McDonald and Webb demonstrated, in 2011, that sample agitation during FS dramatically reduces the necessary time. Then, in 2015, we (H.G. and S.R.) introduced an agitation module into the cryochamber of an automated FS unit and demonstrated that the preparation of algae could be shortened from days to a couple of hours. We argued that variability in the processing, reproducibility, and safety issues are better addressed using automated FS units. For dissemination, we started low-cost manufacturing of agitation modules for two of the most widely used FS units, the Automatic Freeze Substitution Systems, AFS(1) and AFS2, from Leica Microsystems, using three dimensional (3D)-printing of the major components. To test them, several labs independently used the modules on a wide variety of specimens that had previously been processed by manual agitation, or without agitation. We demonstrate that automated processing with sample agitation saves time, increases flexibility with respect to sample requirements and protocols, and produces data of at least as good quality as other approaches.


Assuntos
Substituição ao Congelamento/métodos , Microscopia Eletrônica de Transmissão/métodos , Animais , Arabidopsis/ultraestrutura , Caenorhabditis elegans/ultraestrutura , Cerebelo/ultraestrutura , Chlorella/ultraestrutura , Desenho de Equipamento , Substituição ao Congelamento/economia , Substituição ao Congelamento/instrumentação , Congelamento , Masculino , Camundongos Endogâmicos C57BL , Pressão , Impressão Tridimensional , Fatores de Tempo
14.
Funct Plant Biol ; 42(5): 471-485, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-32480693

RESUMO

Blobs and curves occur everywhere in plant bioimaging: from signals of fluorescence-labelled proteins, through cytoskeletal structures, nuclei staining and cell extensions such as root hairs. Here we look at the problem of colocalisation of blobs with blobs (protein-protein colocalisation) and blobs with curves (organelle-cytoskeleton colocalisation). This article demonstrates a clear quantitative alternative to pixel-based colocalisation methods and, using object-based methods, can quantify not only the level of colocalisation but also the distance between objects. Included in this report are computational algorithms, biological experiments and guidance for those looking to increase their use of computationally-based and quantified analysis of bioimages.

15.
Front Plant Sci ; 5: 254, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24926301

RESUMO

The Arabidopsis Networked (NET) superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in Arabidopsis, which group into four distinct clades or families. NET homologs are absent from the genomes of metazoa and fungi; furthermore, in plantae, NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single family of the NET proteins is found encoded in the club moss genome, an extant species of the earliest vascular plants. Gymnosperms have examples from families 4 and 3, with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 families, the NET1 and pollen-expressed NET2 families are found only as independent sequences in Angiosperms. This is consistent with the divergence of reproductive actin. The four families are conserved across Monocots and Eudicots, with the numbers of members of each clade expanding at this point, due, in part, to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants, they have continued to develop and diversify in a manner which has mirrored the divergence and increasing complexity of land-plant species.

16.
Curr Biol ; 24(12): 1397-1405, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24909329

RESUMO

The cortical endoplasmic reticulum (ER) network in plants is a highly dynamic structure, and it contacts the plasma membrane (PM) at ER-PM anchor/contact sites. These sites are known to be essential for communication between the ER and PM for lipid transport, calcium influx, and ER morphology in mammalian and fungal cells. The nature of these contact sites is unknown in plants, and here, we have identified a complex that forms this bridge. This complex includes (1) NET3C, which belongs to a plant-specific superfamily (NET) of actin-binding proteins, (2) VAP27, a plant homolog of the yeast Scs2 ER-PM contact site protein, and (3) the actin and microtubule networks. We demonstrate that NET3C and VAP27 localize to puncta at the PM and that NET3C and VAP27 form homodimers/oligomers and together form complexes with actin and microtubules. We show that F-actin modulates the turnover of NET3C at these puncta and microtubules regulate the exchange of VAP27 at the same sites. Based on these data, we propose a model for the structure of the plant ER-PM contact sites.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Nicotiana/metabolismo , Proteínas R-SNARE/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citoesqueleto/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Microtúbulos/metabolismo , Proteínas R-SNARE/genética , Nicotiana/genética
17.
Curr Biol ; 22(17): 1595-600, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22840520

RESUMO

Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plant-specific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Análise de Sequência de Proteína , Nicotiana/genética
18.
Plant Mol Biol ; 50(6): 915-24, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12516862

RESUMO

The microtubule cytoskeleton is a dynamic filamentous structure involved in many key processes in plant cell morphogenesis including nuclear and cell division, deposition of cell wall, cell expansion, organelle movement and secretion. The principal microtubule protein is tubulin, which associates to form the wall of the tubule. In addition, various associated proteins bind microtubules either to anchor, cross-link or regulate the microtubule network within cells. Biochemical, molecular biological and genetic approaches are being successfully used to identify these microtubule-associated proteins (MAPs) in plants, and we describe recent progress on three of these proteins.


Assuntos
Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Molecular , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Filogenia , Células Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA