Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(1): 102750, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436563

RESUMO

Type IIB receptor protein tyrosine phosphatases are cell surface transmembrane proteins that engage in cell adhesion via their extracellular domains (ECDs) and cell signaling via their cytoplasmic phosphatase domains. The ECDs of type IIB receptor protein tyrosine phosphatases form stable, homophilic, and trans interactions between adjacent cell membranes. Previous work has demonstrated how one family member, PTPRM, forms head-to-tail homodimers. However, as the interface was composed of residues conserved across the family, the determinants of homophilic specificity remain unknown. Here, we have solved the X-ray crystal structure of the membrane-distal N-terminal domains of PTPRK that form a head-to-tail dimer consistent with intermembrane adhesion. Comparison with the PTPRM structure demonstrates interdomain conformational differences that may define homophilic specificity. Using small-angle X-ray scattering, we determined the solution structures of the full-length ECDs of PTPRM and PTPRK, identifying that both are rigid extended molecules that differ in their overall long-range conformation. Furthermore, we identified one residue, W351, within the interaction interface that differs between PTPRM and PTPRK and showed that mutation to glycine, the equivalent residue in PTPRM, abolishes PTPRK dimer formation in vitro. This comparison of two members of the receptor tyrosine phosphatase family suggests that homophilic specificity is driven by a combination of shape complementarity and specific but limited sequence differences.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Humanos , Adesão Celular , Linhagem Celular , Proteínas Tirosina Fosfatases/metabolismo , Tirosina
2.
Nucleic Acids Res ; 49(D1): D651-D659, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33084862

RESUMO

Gram-negative bacteria utilize secretion systems to export substrates into their surrounding environment or directly into neighboring cells. These substrates are proteins that function to promote bacterial survival: by facilitating nutrient collection, disabling competitor species or, for pathogens, to disable host defenses. Following a rapid development of computational techniques, a growing number of substrates have been discovered and subsequently validated by wet lab experiments. To date, several online databases have been developed to catalogue these substrates but they have limited user options for in-depth analysis, and typically focus on a single type of secreted substrate. We therefore developed a universal platform, BastionHub, that incorporates extensive functional modules to facilitate substrate analysis and integrates the five major Gram-negative secreted substrate types (i.e. from types I-IV and VI secretion systems). To our knowledge, BastionHub is not only the most comprehensive online database available, it is also the first to incorporate substrates secreted by type I or type II secretion systems. By providing the most up-to-date details of secreted substrates and state-of-the-art prediction and visualized relationship analysis tools, BastionHub will be an important platform that can assist biologists in uncovering novel substrates and formulating new hypotheses. BastionHub is freely available at http://bastionhub.erc.monash.edu/.


Assuntos
Bases de Dados como Assunto , Bactérias Gram-Negativas/metabolismo , Curadoria de Dados , Anotação de Sequência Molecular , Especificidade por Substrato
3.
PLoS Biol ; 16(8): e2006026, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30071011

RESUMO

Iron is essential for life. Accessing iron from the environment can be a limiting factor that determines success in a given environmental niche. For bacteria, access of chelated iron from the environment is often mediated by TonB-dependent transporters (TBDTs), which are ß-barrel proteins that form sophisticated channels in the outer membrane. Reports of iron-bearing proteins being used as a source of iron indicate specific protein import reactions across the bacterial outer membrane. The molecular mechanism by which a folded protein can be imported in this way had remained mysterious, as did the evolutionary process that could lead to such a protein import pathway. How does the bacterium evolve the specificity factors that would be required to select and import a protein encoded on another organism's genome? We describe here a model whereby the plant iron-bearing protein ferredoxin can be imported across the outer membrane of the plant pathogen Pectobacterium by means of a Brownian ratchet mechanism, thereby liberating iron into the bacterium to enable its growth in plant tissues. This import pathway is facilitated by FusC, a member of the same protein family as the mitochondrial processing peptidase (MPP). The Brownian ratchet depends on binding sites discovered in crystal structures of FusC that engage a linear segment of the plant protein ferredoxin. Sequence relationships suggest that the bacterial gene encoding FusC has previously unappreciated homologues in plants and that the protein import mechanism employed by the bacterium is an evolutionary echo of the protein import pathway in plant mitochondria and plastids.


Assuntos
Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pectobacterium/metabolismo , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Ferredoxinas/metabolismo , Metaloendopeptidases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transporte Proteico/fisiologia , Peptidase de Processamento Mitocondrial
4.
EMBO Rep ; 20(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30952693

RESUMO

Bacteriophage ("bacteria eaters") or phage is the collective term for viruses that infect bacteria. While most phages are pathogens that kill their bacterial hosts, the filamentous phages of the sub-class Inoviridae live in cooperative relationships with their bacterial hosts, akin to the principal behaviours found in the modern-day sharing economy: peer-to-peer support, to offset any burden. Filamentous phages impose very little burden on bacteria and offset this by providing service to help build better biofilms, or provision of toxins and other factors that increase virulence, or modified behaviours that provide novel motile activity to their bacterial hosts. Past, present and future biotechnology applications have been built on this phage-host cooperativity, including DNA sequencing technology, tools for genetic engineering and molecular analysis of gene expression and protein production, and phage-display technologies for screening protein-ligand and protein-protein interactions. With the explosion of genome and metagenome sequencing surveys around the world, we are coming to realize that our knowledge of filamentous phage diversity remains at a tip-of-the-iceberg stage, promising that new biology and biotechnology are soon to come.


Assuntos
Bacteriófagos , Biotecnologia , Interações Hospedeiro-Patógeno , Bactérias/virologia , Fenômenos Fisiológicos Bacterianos , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Biodiversidade , Biofilmes , Biotecnologia/economia , Genoma Viral , Estágios do Ciclo de Vida
5.
PLoS Pathog ; 14(3): e1006945, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29601598

RESUMO

Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea by evading innate immunity. Colonizing the mucosa of the reproductive tract depends on the bacterial outer membrane porin, PorB, which is essential for ion and nutrient uptake. PorB is also targeted to host mitochondria and regulates apoptosis pathways to promote infections. How PorB traffics from the outer membrane of N. gonorrhoeae to mitochondria and whether it modulates innate immune cells, such as macrophages, remains unclear. Here, we show that N. gonorrhoeae secretes PorB via outer membrane vesicles (OMVs). Purified OMVs contained primarily outer membrane proteins including oligomeric PorB. The porin was targeted to mitochondria of macrophages after exposure to purified OMVs and wild type N. gonorrhoeae. This was associated with loss of mitochondrial membrane potential, release of cytochrome c, activation of apoptotic caspases and cell death in a time-dependent manner. Consistent with this, OMV-induced macrophage death was prevented with the pan-caspase inhibitor, Q-VD-PH. This shows that N. gonorrhoeae utilizes OMVs to target PorB to mitochondria and to induce apoptosis in macrophages, thus affecting innate immunity.


Assuntos
Apoptose , Membrana Celular/metabolismo , Gonorreia/patologia , Macrófagos/patologia , Mitocôndrias/patologia , Neisseria gonorrhoeae/patogenicidade , Porinas/metabolismo , Animais , Gonorreia/microbiologia , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/microbiologia , Porinas/genética
6.
Biochem J ; 476(22): 3435-3453, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31675053

RESUMO

Key physiological differences between bacterial and mammalian metabolism provide opportunities for the development of novel antimicrobials. We examined the role of the multifunctional enzyme S-adenosylhomocysteine/Methylthioadenosine (SAH/MTA) nucleosidase (Pfs) in the virulence of S. enterica var Typhimurium (S. Typhimurium) in mice, using a defined Pfs deletion mutant (i.e. Δpfs). Pfs was essential for growth of S. Typhimurium in M9 minimal medium, in tissue cultured cells, and in mice. Studies to resolve which of the three known functions of Pfs were key to murine virulence suggested that downstream production of autoinducer-2, spermidine and methylthioribose were non-essential for Salmonella virulence in a highly sensitive murine model. Mass spectrometry revealed the accumulation of SAH in S. Typhimurium Δpfs and complementation of the Pfs mutant with the specific SAH hydrolase from Legionella pneumophila reduced SAH levels, fully restored growth ex vivo and the virulence of S. Typhimurium Δpfs for mice. The data suggest that Pfs may be a legitimate target for antimicrobial development, and that the key role of Pfs in bacterial virulence may be in reducing the toxic accumulation of SAH which, in turn, suppresses an undefined methyltransferase.


Assuntos
Proteínas de Bactérias/metabolismo , N-Glicosil Hidrolases/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/enzimologia , Salmonella typhimurium/patogenicidade , Animais , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , N-Glicosil Hidrolases/genética , Purina-Núcleosídeo Fosforilase/genética , S-Adenosil-Homocisteína/metabolismo , Salmonella typhimurium/genética , Virulência
7.
Mol Microbiol ; 109(5): 584-599, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29873128

RESUMO

Members of the Omp85 protein superfamily have important roles in Gram-negative bacteria, with the archetypal protein BamA being ubiquitous given its essential function in the assembly of outer membrane proteins. In some bacterial lineages, additional members of the family exist and, in most of these cases, the function of the protein is unknown. We detected one of these Omp85 proteins in the pathogen Klebsiella pneumoniae B5055, and refer to the protein as BamK. Here, we show that bamK is a conserved element in the core genome of Klebsiella, and its expression rescues a loss-of-function ∆bamA mutant. We developed an E. coli model system to measure and compare the specific activity of BamA and BamK in the assembly reaction for the critical substrate LptD, and find that BamK is as efficient as BamA in assembling the native LptDE complex. Comparative structural analysis revealed that the major distinction between BamK and BamA is in the external facing surface of the protein, and we discuss how such changes may contribute to a mechanism for resistance against infection by bacteriophage.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano/genética , Klebsiella pneumoniae/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C
8.
J Bacteriol ; 200(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084860

RESUMO

The ß-barrel assembly machinery (BAM) complex is the core machinery for the assembly of ß-barrel membrane proteins, and inhibition of BAM complex activity is lethal to bacteria. Discovery of integral membrane proteins that are key to pathogenesis and yet do not require assistance from the BAM complex raises the question of how these proteins assemble into bacterial outer membranes. Here, we address this question through a structural analysis of the type 2 secretion system (T2SS) secretin from enteropathogenic Escherichia coli O127:H6 strain E2348/69. Long ß-strands assemble into a barrel extending 17 Å through and beyond the outer membrane, adding insight to how these extensive ß-strands are assembled into the E. coli outer membrane. The substrate docking chamber of this secretin is shown to be sufficient to accommodate the substrate mucinase SteC.IMPORTANCE In order to cause disease, bacterial pathogens inhibit immune responses and induce pathology that will favor their replication and dissemination. In Gram-negative bacteria, these key attributes of pathogenesis depend on structures assembled into or onto the outer membrane. One of these is the T2SS. The Vibrio-type T2SS mediates cholera toxin secretion in Vibrio cholerae, and in Escherichia coli O127:H6 strain E2348/69, the same machinery mediates secretion of the mucinases that enable the pathogen to penetrate intestinal mucus and thereby establish deadly infections.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Escherichia coli Enteropatogênica/química , Secretina/química , Sistemas de Secreção Tipo II/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/química , Microscopia Eletrônica/métodos , Modelos Moleculares , Polissacarídeo-Liases/metabolismo , Ligação Proteica , Conformação Proteica , Sistemas de Translocação de Proteínas/química , Sistemas de Translocação de Proteínas/metabolismo , Transporte Proteico , Secretina/genética , Secretina/isolamento & purificação , Sistemas de Secreção Tipo II/metabolismo , Vibrio cholerae/química , Vibrio cholerae/metabolismo
9.
Mol Microbiol ; 97(4): 616-29, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25976323

RESUMO

In Gram-negative bacteria, ß-barrel proteins are integrated into the outer membrane by the ß-barrel assembly machinery, with key components of the machinery being the Omp85 family members BamA and TamA. Recent crystal structures and cryo-electron microscopy show a diverse set of secretion pores in Gram-negative bacteria, with α-helix (Wza and GspD) or ß-strand (CsgG) transmembrane segments in the outer membrane. We developed assays to measure the assembly of three distinct secretion pores that mediate protein (GspD), curli fibre (CsgG) and capsular polysaccharide (Wza) secretion by bacteria and show that depletion of BamA and TamA does not diminish the assembly of Wza, GspD or CsgG. Like the well characterised pilotins for GspD and other secretins, small periplasmic proteins enhance the assembly of the CsgG ß-barrel. We discuss a model for integral protein assembly into the bacterial outer membrane, focusing on the commonalities and differences in the assembly of Wza, GspD and CsgG.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Sistemas de Secreção Bacterianos/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/genética , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Porinas/química , Porinas/genética , Porinas/metabolismo , Estrutura Secundária de Proteína
10.
J Antimicrob Chemother ; 71(2): 413-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490013

RESUMO

OBJECTIVES: Biofilm-related human infections have high mortality rates due to drug resistance. Cohabitation of diverse microbes in polymicrobial biofilms is common and these infections present additional challenges for treatment compared with monomicrobial biofilms. Here, we address this therapeutic gap by assessing the potential of a new class of antimicrobial agents, guanylated polymethacrylates, in the treatment of polymicrobial biofilms built by two prominent human pathogens, the fungus Candida albicans and the bacterium Staphylococcus aureus. METHODS: We used imaging and quantitative methods to test the antibiofilm efficacy of guanylated polymethacrylates, a new class of drugs that structurally mimic antimicrobial peptides. We further compared guanylated polymethacrylates with first-line antistaphylococcal and anti-Candida agents used as combinatorial therapy against polymicrobial biofilms. RESULTS: Guanylated polymethacrylates were highly effective as a sole agent, killing both C. albicans and S. aureus when applied to established polymicrobial biofilms. Furthermore, they outperformed multiple combinations of current antimicrobial drugs, with one of the tested compounds killing 99.98% of S. aureus and 82.2% of C. albicans at a concentration of 128 mg/L. The extracellular biofilm matrix provided protection, increasing the MIC of the polymethacrylates by 2-4-fold when added to planktonic assays. Using the C. albicans bgl2ΔΔ mutant, we implicate matrix polysaccharide ß-1,3 glucan in the mechanism of protection. Data for two structurally distinct polymers suggest that this mechanism could be minimized through chemical optimization of the polymer structure. Finally, we demonstrate that a potential application for these polymers is in antimicrobial lock therapy. CONCLUSIONS: Guanylated polymethacrylates are a promising lead for the development of an effective monotherapy against C. albicans/S. aureus polymicrobial biofilms.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Ácidos Polimetacrílicos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
11.
Appl Environ Microbiol ; 81(1): 282-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25344238

RESUMO

Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced "target protein." Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Engenharia Metabólica/métodos , Poliésteres/metabolismo , Bactérias/crescimento & desenvolvimento , Cromatografia de Afinidade , Fermentação , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Microb Cell Fact ; 14: 190, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26608345

RESUMO

BACKGROUND: Laboratory scale recombinant protein production and purification techniques are often complicated, involving multiple chromatography steps and specialized equipment and reagents. Here it was demonstrated that recombinant proteins can be expressed as covalently immobilized to the surface of polyester (polyhydroxyalkanoate, PHA) beads in vivo in Escherichia coli by genetically fusing them to a polyester synthase gene (phaC). The insertion of a self-cleaving module, a modified sortase A (SrtA) from Staphylococcus aureus and its five amino acid recognition sequence between the synthase and the target protein led to a simple protein production and purification method. RESULTS: The generation of hybrid genes encoding tripartite PhaC-SrtA-Target fusion proteins, enabled immobilization of proteins of interest to the surface of PHA beads in vivo. After simple cell lysis and isolation of the PHA beads, the target proteins could be selectively and efficiently released form the beads by activating the sortase with CaCl2 and triglycine. Up to 6 mg/l of soluble proteins at a purity of ~98 % could be isolated in one step with no optimization. This process was used to produce and isolate three proteins: Green fluorescent protein, maltose binding protein and the Mycobacterium tuberculosis vaccine candidate Rv1626. CONCLUSIONS: We have developed a new technique for easy production and purification of recombinant proteins. This technique is capable of producing and purifying high yields of proteins suitable for research application in less than 2 days. No costly or specialized protein chromatography equipment, resins, reagents or expertise are required.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Poliésteres/química , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Cloreto de Cálcio/farmacologia , Cisteína Endopeptidases/genética , Ativação Enzimática/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Oligopeptídeos/farmacologia , Poliésteres/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Staphylococcus aureus/enzimologia
13.
Appl Microbiol Biotechnol ; 99(17): 7253-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25921805

RESUMO

Alginates exhibit unique material properties suitable for medical and industrial applications. However, if produced by Pseudomonas aeruginosa, it is an important virulence factor in infection of cystic fibrosis patients. The alginate biosynthesis machinery is activated by c-di-GMP imparted by the inner membrane protein, MucR. Here, it was shown that MucR impairs alginate production in response to nitrate in P. aeruginosa. Subsequent site-specific mutagenesis of MucR revealed that the second MHYT sensor motif (MHYT II, amino acids 121-124) of MucR sensor domain was involved in nitrate sensing. We also showed that both c-di-GMP synthesizing and degrading active sites of MucR were important for alginate production. Although nitrate and deletion of MucR impaired alginate promoter activity and global c-di-GMP levels, alginate yields were not directly correlated with alginate promoter activity or c-di-GMP levels, suggesting that nitrate and MucR modulate alginate production at a post-translational level through a localized pool of c-di-GMP. Nitrate increased pel promoter activity in the mucR mutant while in the same mutant the psl promoter activity was independent of nitrate. Nitrate and deletion of mucR did not impact on swarming motility but impaired attachment to solid surfaces. Nitrate and deletion of mucR promoted the formation of biofilms with increased thickness, cell density, and survival. Overall, this study provided insight into the functional role of MucR with respect to nitrate-mediated regulation of alginate biosynthesis.


Assuntos
Alginatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Nitratos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Deleção de Genes , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida
14.
Environ Microbiol ; 16(10): 2997-3011, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24428834

RESUMO

A vast range of extracellular polysaccharides are produced by bacteria in order to adapt to and thrive in diverse environmental niches. Many of these polymers have attracted great attention due to their implication in biofilm formation, capsule formation, virulence, or for their potential medical and industrial uses. One important exopolysaccharide, alginate, is produced by various Pseudomonas spp. and Azotobacter vinelandii. Alginate is of particular interest due to its role in the pathogenesis of Pseudomonas aeruginosa lung infection in cystic fibrosis patients. Here, we will discuss the genetic organization and distribution of the genes involved in the biosynthesis of this significant polymer. The complex regulatory networks involved in the production of bacterial alginate will be reviewed, including transcriptional, posttranscriptional and posttranslational forms of regulation.


Assuntos
Regulação Bacteriana da Expressão Gênica , Alginatos , Bactérias/genética , Bactérias/metabolismo , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Pseudomonas aeruginosa/genética , Transcrição Gênica
15.
Proc Natl Acad Sci U S A ; 108(32): 13083-8, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21778407

RESUMO

Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 Å crystal structure of AlgE, which reveals a monomeric 18-stranded ß-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 (ΔT8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or ΔL2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with ΔT8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/metabolismo , Pseudomonas aeruginosa/metabolismo , Alginatos , Proteínas de Bactérias/metabolismo , Transporte Biológico , Sequência Conservada , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos , Modelos Moleculares , Periplasma/metabolismo , Maleabilidade , Polissacarídeos/metabolismo , Porinas/metabolismo , Porosidade , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Especificidade por Substrato
16.
Appl Environ Microbiol ; 79(10): 3264-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23503314

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen of particular significance to cystic fibrosis patients. This bacterium produces the exopolysaccharide alginate, which is an indicator of poor prognosis for these patients. The proteins required for alginate polymerization and secretion are encoded by genes organized in a single operon; however, the existence of internal promoters has been reported. It has been proposed that these proteins form a multiprotein complex which extends from the inner to outer membrane. Here, experimental evidence supporting such a multiprotein complex was obtained via mutual stability analysis, pulldown assays, and coimmunoprecipitation. The impact of the absence of single proteins or subunits on this multiprotein complex, i.e., on the stability of potentially interacting proteins, as well as on alginate production was investigated. Deletion of algK in an alginate-overproducing strain, PDO300, interfered with the polymerization of alginate, suggesting that in the absence of AlgK, the polymerase and copolymerase subunits, Alg8 and Alg44, are destabilized. Based on mutual stability analysis, interactions between AlgE (outer membrane), AlgK (periplasm), AlgX (periplasm), Alg44 (inner membrane), Alg8 (inner membrane), and AlgG (periplasm) were proposed. Coimmunoprecipitation using a FLAG-tagged variant of AlgE further demonstrated its interaction with AlgK. Pulldown assays using histidine-tagged AlgK showed that AlgK interacts with AlgX, which in turn was also copurified with histidine-tagged Alg44. Detection of AlgG and AlgE in PAO1 supported the existence of internal promoters controlling expression of the respective genes. Overall experimental evidence was provided for the existence of a multiprotein complex required for alginate polymerization and secretion.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo , Alginatos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Técnicas de Inativação de Genes , Genes Bacterianos , Ácido Glucurônico/biossíntese , Ácido Glucurônico/genética , Ácidos Hexurônicos , Imunoprecipitação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Polimerização , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Pseudomonas aeruginosa/genética
17.
Nat Med ; 29(5): 1146-1154, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37169862

RESUMO

Obesity is associated with an increased risk of severe Coronavirus Disease 2019 (COVID-19) infection and mortality. COVID-19 vaccines reduce the risk of serious COVID-19 outcomes; however, their effectiveness in people with obesity is incompletely understood. We studied the relationship among body mass index (BMI), hospitalization and mortality due to COVID-19 among 3.6 million people in Scotland using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. We found that vaccinated individuals with severe obesity (BMI > 40 kg/m2) were 76% more likely to experience hospitalization or death from COVID-19 (adjusted rate ratio of 1.76 (95% confidence interval (CI), 1.60-1.94). We also conducted a prospective longitudinal study of a cohort of 28 individuals with severe obesity compared to 41 control individuals with normal BMI (BMI 18.5-24.9 kg/m2). We found that 55% of individuals with severe obesity had unquantifiable titers of neutralizing antibody against authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus compared to 12% of individuals with normal BMI (P = 0.0003) 6 months after their second vaccine dose. Furthermore, we observed that, for individuals with severe obesity, at any given anti-spike and anti-receptor-binding domain (RBD) antibody level, neutralizing capacity was lower than that of individuals with a normal BMI. Neutralizing capacity was restored by a third dose of vaccine but again declined more rapidly in people with severe obesity. We demonstrate that waning of COVID-19 vaccine-induced humoral immunity is accelerated in individuals with severe obesity. As obesity is associated with increased hospitalization and mortality from breakthrough infections, our findings have implications for vaccine prioritization policies.


Assuntos
COVID-19 , Obesidade Mórbida , Humanos , Vacinas contra COVID-19 , Estudos Longitudinais , Estudos Prospectivos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Obesidade/epidemiologia , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinação
18.
Appl Microbiol Biotechnol ; 93(1): 215-27, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21713511

RESUMO

The opportunistic human pathogen Pseudomonas aeruginosa produces an extracellular polysaccharide called alginate. This is especially relevant in pulmonary infection of cystic fibrosis patients where it protects the bacteria from the hosts' immune system and the diffusion of antibiotics. Here a connection between the stability of a proposed alginate polymerisation/secretion complex and the regulation of the operon encoding these proteins was assessed. Experimental evidence was provided for a periplasmic multiprotein complex composed of AlgX, AlgK, and the regulatory protein MucD. Disruption of the alginate machinery in a mucoid strain, either by removal, or over production of various essential proteins resulted in an at least 2-fold increase in transcription of a lacZ reporter under the control of the algD promoter. Instability of the complex was indicated by an increase in secretion of alginate degradation products. This increase in transcription was found to be dependent on the negative regulatory protein MucD. Surprisingly, over production of MucD leads to a 3.3-fold increase in transcription from the alginate promoter and a 1.7-fold increase in the levels of alginate produced, suggesting an additional positive regulatory role for MucD in mucoid strains. Overall, this study provided experimental evidence for the proposed periplasmic multiprotein complex and established a link of a constituent of this complex, MucD, to transcriptional regulation of alginate biosynthesis genes.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Serina Endopeptidases/metabolismo , Alginatos , Proteínas de Bactérias/genética , Deleção de Genes , Expressão Gênica , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Humanos , Modelos Biológicos , Óperon , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Pseudomonas aeruginosa/genética , Serina Endopeptidases/genética
19.
Elife ; 112022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264065

RESUMO

Protein tyrosine phosphatase receptor-type kappa (PTPRK) is a transmembrane receptor that links extracellular homophilic interactions to intracellular catalytic activity. Previously we showed that PTPRK promotes cell-cell adhesion by selectively dephosphorylating several cell junction regulators including the protein Afadin (Fearnley et al, 2019). Here, we demonstrate that Afadin is recruited for dephosphorylation by directly binding to the PTPRK D2 pseudophosphatase domain. We mapped this interaction to a putative coiled coil (CC) domain in Afadin that is separated by more than 100 amino acids from the substrate pTyr residue. We identify the residues that define PTP specificity, explaining how Afadin is selectively dephosphorylated by PTPRK yet not by the closely related receptor tyrosine phosphatase PTPRM. Our work demonstrates that PTP substrate specificity can be determined by protein-protein interactions distal to the active site. This explains how PTPRK and other PTPs achieve substrate specificity despite a lack of specific sequence context at the substrate pTyr. Furthermore, by demonstrating that these interactions are phosphorylation-independent and mediated via binding to a non-catalytic domain, we highlight how receptor PTPs could function as intracellular scaffolds in addition to catalyzing protein dephosphorylation.


Assuntos
Proteínas dos Microfilamentos , Proteínas Tirosina Fosfatases , Proteínas dos Microfilamentos/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Especificidade por Substrato
20.
Elife ; 112022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084330

RESUMO

The cell envelope of Gram-negative bacteria consists of two membranes surrounding a periplasm and peptidoglycan layer. Molecular machines spanning the cell envelope depend on spatial constraints and load-bearing forces across the cell envelope and surface. The mechanisms dictating spatial constraints across the cell envelope remain incompletely defined. In Escherichia coli, the coiled-coil lipoprotein Lpp contributes the only covalent linkage between the outer membrane and the underlying peptidoglycan layer. Using proteomics, molecular dynamics, and a synthetic lethal screen, we show that lengthening Lpp to the upper limit does not change the spatial constraint but is accommodated by other factors which thereby become essential for viability. Our findings demonstrate E. coli expressing elongated Lpp does not simply enlarge the periplasm in response, but the bacteria accommodate by a combination of tilting Lpp and reducing the amount of the covalent bridge. By genetic screening, we identified all of the genes in E. coli that become essential in order to enact this adaptation, and by quantitative proteomics discovered that very few proteins need to be up- or down-regulated in steady-state levels in order to accommodate the longer Lpp. We observed increased levels of factors determining cell stiffness, a decrease in membrane integrity, an increased membrane vesiculation and a dependance on otherwise non-essential tethers to maintain lipid transport and peptidoglycan biosynthesis. Further this has implications for understanding how spatial constraint across the envelope controls processes such as flagellum-driven motility, cellular signaling, and protein translocation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sobrevivência Celular/fisiologia , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Periplasma/fisiologia , Membrana Celular/metabolismo , Parede Celular , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , Peptidoglicano , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA