Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 582(7812): 395-398, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494010

RESUMO

Neuroprotectant strategies that have worked in rodent models of stroke have failed to provide protection in clinical trials. Here we show that the opposite circadian cycles in nocturnal rodents versus diurnal humans1,2 may contribute to this failure in translation. We tested three independent neuroprotective approaches-normobaric hyperoxia, the free radical scavenger α-phenyl-butyl-tert-nitrone (αPBN), and the N-methyl-D-aspartic acid (NMDA) antagonist MK801-in mouse and rat models of focal cerebral ischaemia. All three treatments reduced infarction in day-time (inactive phase) rodent models of stroke, but not in night-time (active phase) rodent models of stroke, which match the phase (active, day-time) during which most strokes occur in clinical trials. Laser-speckle imaging showed that the penumbra of cerebral ischaemia was narrower in the active-phase mouse model than in the inactive-phase model. The smaller penumbra was associated with a lower density of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive dying cells and reduced infarct growth from 12 to 72 h. When we induced circadian-like cycles in primary mouse neurons, deprivation of oxygen and glucose triggered a smaller release of glutamate and reactive oxygen species, as well as lower activation of apoptotic and necroptotic mediators, in 'active-phase' than in 'inactive-phase' rodent neurons. αPBN and MK801 reduced neuronal death only in 'inactive-phase' neurons. These findings suggest that the influence of circadian rhythm on neuroprotection must be considered for translational studies in stroke and central nervous system diseases.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Neurônios/patologia , Neuroproteção , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/prevenção & controle , Glucose/deficiência , Humanos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/fisiopatologia , Pesquisa Translacional Biomédica , Falha de Tratamento
2.
Nature ; 583(7814): E14, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32533095

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Stroke ; 55(7): 1904-1913, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38913800

RESUMO

BACKGROUND: The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved mitochondrial response that is critical for maintaining mitochondrial and energetic homeostasis under cellular stress after tissue injury and disease. Here, we ask whether UPRmt may be a potential therapeutic target for ischemic stroke. METHODS: We performed the middle cerebral artery occlusion and oxygen-glucose deprivation models to mimic ischemic stroke in vivo and in vitro, respectively. Oligomycin and meclizine were used to trigger the UPRmt. We used 2,3,5-triphenyltetrazolium chloride staining, behavioral tests, and Nissl staining to evaluate cerebral injury in vivo. The Cell Counting Kit-8 assay and the Calcein AM Assay Kit were conducted to test cerebral injury in vitro. RESULTS: Inducing UPRmt with oligomycin protected neuronal cultures against oxygen-glucose deprivation. UPRmt could also be triggered with meclizine, and this Food and Drug Administration-approved drug also protected neurons against oxygen-glucose deprivation. Blocking UPRmt with siRNA against activating transcription factor 5 eliminated the neuroprotective effects of meclizine. In a mouse model of focal cerebral ischemia, pretreatment with meclizine was able to induce UPRmt in vivo, which reduced infarction and improved neurological outcomes. CONCLUSIONS: These findings suggest that the UPRmt is important in maintaining the survival of neurons facing ischemic/hypoxic stress. The UPRmt mechanism may provide a new therapeutic avenue for ischemic stroke.


Assuntos
Isquemia Encefálica , Glucose , Mitocôndrias , Neurônios , Resposta a Proteínas não Dobradas , Animais , Masculino , Camundongos , Isquemia Encefálica/metabolismo , Células Cultivadas , Glucose/deficiência , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
4.
Nature ; 535(7613): 551-5, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27466127

RESUMO

Neurons can release damaged mitochondria and transfer them to astrocytes for disposal and recycling. This ability to exchange mitochondria may represent a potential mode of cell-to-cell signalling in the central nervous system. Here we show that astrocytes in mice can also release functional mitochondria that enter neurons. Astrocytic release of extracellular mitochondrial particles was mediated by a calcium-dependent mechanism involving CD38 and cyclic ADP ribose signalling. Transient focal cerebral ischaemia in mice induced entry of astrocytic mitochondria into adjacent neurons, and this entry amplified cell survival signals. Suppression of CD38 signalling by short interfering RNA reduced extracellular mitochondria transfer and worsened neurological outcomes. These findings suggest a new mitochondrial mechanism of neuroglial crosstalk that may contribute to endogenous neuroprotective and neurorecovery mechanisms after stroke.


Assuntos
Astrócitos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/patologia , Acidente Vascular Cerebral/patologia , ADP-Ribosil Ciclase 1/deficiência , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Cálcio/metabolismo , Sobrevivência Celular , ADP-Ribose Cíclica/metabolismo , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Neurônios/metabolismo , Fatores de Proteção , RNA Interferente Pequeno/genética , Transdução de Sinais , Estresse Fisiológico , Acidente Vascular Cerebral/metabolismo
5.
Stroke ; 52(11): 3670-3679, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34587791

RESUMO

Background and Purpose: Inflammatory mediators in blood have been proposed as potential biomarkers in stroke. However, a direct relationship between these circulating factors and brain-specific ischemic injury remains to be fully defined. Methods: An unbiased screen in a nonhuman primate model of stroke was used to find out the most responsive circulating biomarker flowing ischemic stroke. Then this phenomenon was checked in human beings and mice. Finally, we observed the temporospatial responsive characteristics of this biomarker after ischemic brain injury in mice to evaluate the direct relationship between this circulating factor and central nervous system­specific ischemic injury. Results: In a nonhuman primate model, an unbiased screen revealed CCL2 (C-C motif chemokine ligand 2) as a major response factor in plasma after stroke. In mouse models of focal cerebral ischemia, plasma levels of CCL2 showed a transient response, that is, rapidly elevated by 2 to 3 hours postischemia but then renormalized back to baseline levels by 24 hours. However, a different CCL2 temporal profile was observed in whole brain homogenate, cerebrospinal fluid, and isolated brain microvessels, with a progressive increase over 24 hours, demonstrating a mismatch between brain versus plasma responses. In contrast to the lack of correlation with central nervous system responses, 2 peripheral compartments showed transient profiles that matched circulating plasma signatures. CCL2 protein in lymph nodes and adipose tissue was significantly increased at 2 hours and renormalized by 24 hours. Conclusions: These findings may provide a cautionary tale for biomarker pursuits in plasma. Besides a direct central nervous system response, peripheral organs may also contribute to blood signatures in complex and indirect ways.


Assuntos
Biomarcadores/análise , Quimiocina CCL2/análise , AVC Isquêmico , Animais , Modelos Animais de Doenças , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pesquisa Translacional Biomédica
6.
Stroke ; 51(10): 3142-3146, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32819193

RESUMO

BACKGROUND AND PURPOSE: There is an urgent need to develop adjunct therapies that can be added onto reperfusion for acute ischemic stroke. Recently, mitochondrial transplantation has emerged as a promising therapeutic approach for boosting brain tissue protection. In this proof-of-concept study, we investigate the feasibility of using placenta as a source for mitochondrial transplantation in a mouse model of transient focal cerebral ischemia-reperfusion. METHODS: Mitochondria-enriched fractions were isolated from cryopreserved mouse placenta. Mitochondrial purity and JC1 membrane potentials were assessed by flow cytometry. Adenosine triphosphate and mitochondrial proteins were measured by luminescence intensity and western blot, respectively. Therapeutic efficacy of mitochondrial fractions was assessed in a mouse model of transient focal cerebral ischemia-reperfusion. RESULTS: Flow cytometry analysis demonstrated that about 87% of placental mitochondria were viable and maintained JC1 membrane potentials after isolation. Placental mitochondrial fractions contained adenosine triphosphate equivalent to mitochondrial fractions isolated from skeletal muscle and brown fat tissue. Normalized mitochondrial antioxidant enzymes (glutathione reductase, MnSOD [manganese superoxide dismutase]) and HSP70 (heat shock protein 70) were highly preserved in placental mitochondrial fractions. Treatment with placental mitochondrial fractions immediately after reperfusion significantly decreased infarction after focal cerebral ischemia in mice. CONCLUSIONS: Cryopreserved placenta can be a feasible source for viable mitochondrial isolation. Transplantation with placental mitochondria may amplify beneficial effects of reperfusion in stroke.


Assuntos
Mitocôndrias/transplante , Placenta/transplante , Traumatismo por Reperfusão/terapia , Animais , Feminino , Citometria de Fluxo , Glutationa Redutase/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Placenta/metabolismo , Gravidez , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase/metabolismo
7.
Stroke ; 51(9): 2844-2853, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32772683

RESUMO

BACKGROUND AND PURPOSE: Although VEGF165 (vascular endothelial growth factor-165) is able to enhance both angiogenesis and neurogenesis, it also increases vascular permeability through the blood-brain barrier. Heparan sulfate (HS) sugars play important roles in regulating VEGF bioactivity in the pericellular compartment. Here we asked whether an affinity-purified VEGF165-binding HS (HS7) could augment endogenous VEGF activity during stroke recovery without affecting blood-brain barrier function. METHODS: Both rat brain endothelial cell line 4 and primary rat neural progenitor cells were used to evaluate the potential angiogenic and neurogenic effects of HS7 in vitro. For in vivo experiments, male Sprague-Dawley rats were subjected to 100 minutes of transient focal cerebral ischemia, then treated after 4 days with either PBS or HS7. One week later, infarct volume, behavioral sequelae, immunohistochemical markers of angiogenesis and neural stem cell proliferation were assessed. RESULTS: HS7 significantly enhanced VEGF165-mediated angiogenesis in rat brain endothelial cell line 4 brain endothelial cells, and increased the proliferation and differentiation of primary neural progenitor cells, both via the VEGFR2 (vascular endothelial growth factor receptor 2) pathway. Intracerebroventricular injection of HS7 improved neurological outcome in ischemic rats without changing infarct volumes. Immunostaining of the compromised cerebrum demonstrated increases in collagen IV/Ki67 and nestin/Ki67 after HS7 exposure, consistent with its ability to promote angiogenesis and neurogenesis, without compromising blood-brain barrier integrity. CONCLUSIONS: A VEGF-activating glycosaminoglycan sugar, by itself, is able to enhance endogenous VEGF165 activity during the post-ischemic recovery phase of stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Heparitina Sulfato/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Heparitina Sulfato/administração & dosagem , Infarto da Artéria Cerebral Média/prevenção & controle , Injeções Intraventriculares , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/fisiopatologia , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260683

RESUMO

A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that associates with intracellular molecules to regulate multiple signal transductions. Although the roles of AKAP12 in the central nervous system are still relatively understudied, it was previously shown that AKAP12 regulates blood-retinal barrier formation. In this study, we asked whether AKAP12 also supports the function and integrity of the blood-brain barrier (BBB). In a mouse model of focal ischemia, the expression level of AKAP12 in cerebral endothelial cells was upregulated during the acute phase of stroke. Also, in cultured cerebral endothelial cells, oxygen-glucose deprivation induced the upregulation of AKAP12. When AKAP12 expression was suppressed by an siRNA approach in cultured endothelial cells, endothelial permeability was increased along with the dysregulation of ZO-1/Claudin 5 expression. In addition, the loss of AKAP12 expression caused an upregulation/activation of the Rho kinase pathway, and treatment of Rho kinase inhibitor Y-27632 mitigated the increase of endothelial permeability in AKAP12-deficient endothelial cell cultures. These in vitro findings were confirmed by our in vivo experiments using Akap12 knockout mice. Compared to wild-type mice, Akap12 knockout mice showed a larger extent of BBB damage after stroke. However, the inhibition of rho kinase by Y-27632 tightened the BBB in Akap12 knockout mice. These data may suggest that endogenous AKAP12 works to alleviate the damage and dysfunction of the BBB caused by ischemic stress. Therefore, the AKAP12-rho-kinase signaling pathway represents a novel therapeutic target for stroke.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteínas de Ciclo Celular/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Animais , Permeabilidade da Membrana Celular , Endotélio Vascular/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases Associadas a rho/metabolismo
9.
Stem Cells ; 36(9): 1404-1410, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29781122

RESUMO

Endothelial progenitor cells (EPCs) have been pursued as a potential cellular therapy for stroke and central nervous system injury. However, their underlying mechanisms remain to be fully defined. Recent experimental studies suggest that mitochondria may be released and transferred between cells. In this proof-of-concept study, we asked whether beneficial effects of EPCs may partly involve a mitochondrial phenomenon as well. First, EPC-derived conditioned medium was collected and divided into supernatant and particle fractions after centrifugation. Electron microscopy, Western blots, and flow cytometry showed that EPCs were able to release mitochondria. ATP and oxygen consumption assays suggested that these extracellular mitochondria may still be functionally viable. Confocal microscopy confirmed that EPC-derived extracellular mitochondria can be incorporated into normal brain endothelial cells. Adding EPC particles to brain endothelial cells promoted angiogenesis and decreased the permeability of brain endothelial cells. Next, we asked whether EPC-derived mitochondria may be protective. As expected, oxygen-glucose deprivation (OGD) increased brain endothelial permeability. Adding EPC-derived mitochondria particles to the damaged brain endothelium increased levels of mitochondrial protein TOM40, mitochondrial DNA copy number, and intracellular ATP. Along with these indirect markers of mitochondrial transfer, endothelial tightness was also restored after OGD. Taken together, these findings suggest that EPCs may support brain endothelial energetics, barrier integrity, and angiogenic function partly through extracellular mitochondrial transfer. Stem Cells 2018;36:1404-1410.


Assuntos
Encéfalo/metabolismo , Células Progenitoras Endoteliais/metabolismo , Endotélio/metabolismo , Mitocôndrias/metabolismo , Humanos , Transdução de Sinais
10.
Int J Mol Sci ; 20(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30642007

RESUMO

Astrocytes comprise the major non-neuronal cell population in the mammalian neurovascular unit. Traditionally, astrocytes are known to play broad roles in central nervous system (CNS) homeostasis, including the management of extracellular ion balance and pH, regulation of neurotransmission, and control of cerebral blood flow and metabolism. After CNS injury, cell⁻cell signaling between neuronal, glial, and vascular cells contribute to repair and recovery in the neurovascular unit. In this mini-review, we propose the idea that astrocytes play a central role in organizing these signals. During CNS recovery, reactive astrocytes communicate with almost all CNS cells and peripheral progenitors, resulting in the promotion of neurogenesis and angiogenesis, regulation of inflammatory response, and modulation of stem/progenitor response. Reciprocally, changes in neurons and vascular components of the remodeling brain should also influence astrocyte signaling. Therefore, understanding the complex and interdependent signaling pathways of reactive astrocytes after CNS injury may reveal fundamental mechanisms and targets for re-integrating the neurovascular unit and augmenting brain recovery.


Assuntos
Astrócitos/citologia , Comunicação Celular , Sistema Nervoso Central/lesões , Astrócitos/metabolismo , Sistema Nervoso Central/irrigação sanguínea , Sistema Nervoso Central/metabolismo , Circulação Cerebrovascular , Humanos , Concentração de Íons de Hidrogênio , Transdução de Sinais , Transmissão Sináptica
11.
Stroke ; 49(4): 1003-1010, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29511131

RESUMO

BACKGROUND AND PURPOSE: Endothelial progenitor cells (EPCs) have been extensively investigated as a therapeutic approach for repairing the vascular system in cerebrovascular diseases. Beyond vascular regeneration per se, EPCs may also release factors that affect the entire neurovascular unit. Here, we aim to study the effects of the EPC secretome on oligovascular remodeling in a mouse model of white matter injury after prolonged cerebral hypoperfusion. METHODS: The secretome of mouse EPCs was analyzed with a proteome array. In vitro, the effects of the EPC secretome and its factor angiogenin were assessed on primary oligodendrocyte precursor cells and mature human cerebral microvascular endothelial cells (hCMED/D3). In vivo, mice were subjected to permanent bilateral common carotid artery stenosis, then treated with EPC secretome at 24 hours and at 1 week, and cognitive outcome was evaluated with the Y maze test together with oligodendrocyte precursor cell proliferation/differentiation and vascular density in white matter at 4 weeks. RESULTS: Multiple growth factors, cytokines, and proteases were identified in the EPC secretome, including angiogenin. In vitro, the EPC secretome significantly enhanced endothelial and oligodendrocyte precursor cell proliferation and potentiated oligodendrocyte precursor cell maturation. Angiogenin was proved to be a key factor since pharmacological blockade of angiogenin signaling negated the positive effects of the EPC secretome. In vivo, treatment with the EPC secretome increased vascular density, myelin, and mature oligodendrocytes in white matter and rescued cognitive function in the mouse hypoperfusion model. CONCLUSIONS: Factors secreted by EPCs may ameliorate white matter damage in the brain by boosting oligovascular remodeling.


Assuntos
Indutores da Angiogênese/farmacologia , Estenose das Carótidas/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Ribonuclease Pancreático/farmacologia , Remodelação Vascular/efeitos dos fármacos , Substância Branca/efeitos dos fármacos , Animais , Isquemia Encefálica/metabolismo , Meios de Cultivo Condicionados , Citocinas/metabolismo , Modelos Animais de Doenças , Glutationa S-Transferase pi/metabolismo , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteína Básica da Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Peptídeo Hidrolases/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Ribonuclease Pancreático/metabolismo , Substância Branca/irrigação sanguínea
12.
J Neurochem ; 146(2): 160-172, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29570780

RESUMO

Ischemic postconditioning is increasingly being investigated as a therapeutic approach for cerebral ischemia. However, the majority of studies are focused on the acute protection of neurons per se. Whether and how postconditioning affects multiple cells in the recovering neurovascular unit remains to be fully elucidated. Here, we asked whether postconditioning may modulate help-me signaling between injured neurons and reactive microglia. Rats were subjected to 100 min of focal cerebral ischemia, then randomized into a control versus postconditioning group. After 3 days of reperfusion, infarct volumes were significantly reduced in animals treated with postconditioning, along with better neurologic outcomes. Immunostaining revealed that ischemic postconditioning increased expression of vascular endothelial growth factor (VEGF) in neurons within peri-infarct regions. Correspondingly, we confirmed that VEGFR2 was expressed on Iba1-positive microglia/macrophages, and confocal microscopy showed that in postconditioned rats, these cells were polarized to a ramified morphology with higher expression of M2-like markers. Treating rats with a VEGF receptor 2 kinase inhibitor negated these effects of postconditioning on microglia/macrophage polarization. In vitro, postconditoning after oxygen-glucose deprivation up-regulated VEGF release in primary neuron cultures, and adding VEGF to microglial cultures partly shifted their M2-like markers. Altogether, our findings support the idea that after postconditioning, injured neurons may release VEGF as a 'help-me' signal that promotes microglia/macrophage polarization into potentially beneficial phenotypes.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Polaridade Celular/fisiologia , Pós-Condicionamento Isquêmico/métodos , Microglia/patologia , Neurônios/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Infarto Encefálico/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/deficiência , Infusões Intraventriculares , Masculino , Proteínas dos Microfilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Biochim Biophys Acta ; 1862(5): 901-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26277436

RESUMO

White matter damage is an important part of cerebrovascular disease and may be a significant contributing factor in vascular mechanisms of cognitive dysfunction and dementia. It is well accepted that white matter homeostasis involves multifactorial interactions between all cells in the axon-glia-vascular unit. But more recently, it has been proposed that beyond cell-cell signaling within the brain per se, dynamic crosstalk between brain and systemic responses such as circulating immune cells and stem/progenitor cells may also be important. In this review, we explore the hypothesis that peripheral cells contribute to damage and repair after white matter damage. Depending on timing, phenotype and context, monocyte/macrophage can possess both detrimental and beneficial effects on oligodendrogenesis and white matter remodeling. Endothelial progenitor cells (EPCs) can be activated after CNS injury and the response may also influence white matter repair process. These emerging findings support the hypothesis that peripheral-derived cells can be both detrimental or beneficial in white matter pathology in cerebrovascular disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.


Assuntos
Encéfalo/patologia , Comunicação Celular , Transtornos Cerebrovasculares/patologia , Substância Branca/patologia , Animais , Encéfalo/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transtornos Cerebrovasculares/terapia , Humanos , Macrófagos/patologia , Monócitos/patologia , Oligodendroglia/patologia , Transplante de Células-Tronco/métodos , Substância Branca/citologia
14.
Stroke ; 48(8): 2231-2237, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28663512

RESUMO

BACKGROUND AND PURPOSE: Recent studies suggest that extracellular mitochondria may be involved in the pathophysiology of stroke. In this study, we assessed the functional relevance of endogenous extracellular mitochondria in cerebrospinal fluid (CSF) in rats and humans after subarachnoid hemorrhage (SAH). METHODS: A standard rat model of SAH was used, where an intraluminal suture was used to perforate a cerebral artery, thus leading to blood extravasation into subarachnoid space. At 24 and 72 hours after SAH, neurological outcomes were measured, and the standard JC1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolylcarbocyanineiodide) assay was used to quantify mitochondrial membrane potentials in the CSF. To further support the rat model experiments, CSF samples were obtained from 41 patients with SAH and 27 control subjects. Mitochondrial membrane potentials were measured with the JC1 assay, and correlations with clinical outcomes were assessed at 3 months. RESULTS: In the standard rat model of SAH, extracellular mitochondria was detected in CSF at 24 and 72 hours after injury. JC1 assays demonstrated that mitochondrial membrane potentials in CSF were decreased after SAH compared with sham-operated controls. In human CSF samples, extracellular mitochondria were also detected, and JC1 levels were also reduced after SAH. Furthermore, higher mitochondrial membrane potentials in the CSF were correlated with good clinical recovery at 3 months after SAH onset. CONCLUSIONS: This proof-of-concept study suggests that extracellular mitochondria may provide a biomarker-like glimpse into brain integrity and recovery after injury.


Assuntos
Líquido Extracelular/metabolismo , Mitocôndrias/metabolismo , Recuperação de Função Fisiológica/fisiologia , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Animais , Biomarcadores/líquido cefalorraquidiano , Humanos , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/ultraestrutura , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/patologia
16.
J Neurochem ; 136(5): 900-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26670206

RESUMO

The concept of macrophage polarization toward different phenotypes after CNS injury has been increasingly discussed. Here, we propose that CD200 treatment may help shift pro-inflammatory macrophages to an arginase 1 (Arg1)-, transglutaminase 2 (TGM2)-, and transforming growth factor beta 1 (TGF-ß)-positive phenotype. Rat macrophages were stimulated by interferon γ and lipopolysaccharide (LPS) to induce pro-inflammatory phenotypes. Treatment with human CD200-Fc up-regulated expression levels of alternatively activated M2-like markers such as Arg1 and TGM2 but suppressed pro-inflammatory M1-like markers such as toll-like receptor 4, interleukin 1 beta (IL-1ß), IL-6, and GM-CSF. Concomitantly, CD200-Fc enhanced (CCAAT/enhancer-binding protein) C/EBP-beta promoter activity, whereas NF-κB activity was suppressed. Treatment with CD200-Fc also up-regulated potentially beneficial TGF-ß expression in macrophages. When C/EBP-beta signaling was suppressed with siRNA, the effect of CD200-Fc on Arg1, TGM2 and TGF-ß up-regulation was canceled. Taken together, these data provide proof-of-principle that targeting CD200 signaling may be a novel therapeutic approach to shift macrophages toward M2-like polarization via modulating cAMP-response element binding protein-C/EBP-beta transcriptional activity. We showed that CD200 treatment decreased pro-inflammatory cytokines (IL-1ß, IL-6, and GM-CSF) along with suppressed inflammatory NF-κB activity in pro-inflammatory Mφ. On the other hand, CD200 increased Arg1, TGM2, and TGF-ß production through CREB-C/EBPß signaling. We think that these findings provide proof-of-concept that CD200 signaling may play a key role in regulating macrophage polarization toward anti-inflammatory phenotypes.


Assuntos
Antígenos CD/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Masculino , NF-kappa B/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
17.
Stroke ; 46(9): 2691-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26243221

RESUMO

BACKGROUND AND PURPOSE: Postconditioning may be a clinically feasible way to protect the brain after a stroke. However, its effects during the recovery phase post stroke remain to be fully elucidated. Here, we examine the hypothesis that ischemic postconditioning amplifies neurogenesis and angiogenesis during stroke recovery. METHODS: Male Sprague-Dawley rats were subjected to 100-minute transient middle cerebral artery occlusion (MCAO) or postconditioning (100-minute middle cerebral artery occlusion plus 10-minute reperfusion plus 10-minute reocclusion). After 2 weeks, infarct volumes, behavioral outcomes, and immunohistochemical markers of neurogenesis and angiogenesis were quantified. RESULTS: Postconditioning significantly reduced infarction and improved neurological outcomes. Concomitantly, brains subjected to postconditioning showed an increase in doublecortin/BrdU and collagen-IV/Ki67-positive cells. CONCLUSIONS: These results suggest that therapeutic effects of postconditioning may involve the promotion of neurogenesis and angiogenic remodeling during the recovery phase after focal cerebral ischemia.


Assuntos
Infarto da Artéria Cerebral Média/terapia , Pós-Condicionamento Isquêmico/métodos , Neovascularização Fisiológica/fisiologia , Neurogênese/fisiologia , Recuperação de Função Fisiológica/fisiologia , Reperfusão/métodos , Animais , Proteína Duplacortina , Masculino , Ratos , Ratos Sprague-Dawley
18.
Proc Natl Acad Sci U S A ; 109(19): 7505-10, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22529378

RESUMO

Crosstalk between the brain and systemic responses in blood is increasingly suspected of playing critical roles in stroke. However, how this communication takes place remains to be fully understood. Here, we show that reactive astrocytes can release a damage-associated molecular-pattern molecule called high-mobility-group-box-1 (HMGB1) that promotes endothelial progenitor cell (EPC)-mediated neurovascular remodeling during stroke recovery. Conditioned media from reactive astrocytes increase EPC proliferation in vitro. siRNA suppression of HMGB1 in astrocytes or blockade of the HMGB1 receptor for advanced glycation endproducts in EPCs prevents this effect. In a mouse model of focal cerebral ischemia, reactive astrocytes in the peri-infarct cortex up-regulate HMGB1 at 14 d poststroke, along with an accumulation of endogenous EPCs. In vivo siRNA suppression of HMGB1 blocks this EPC response, reduces peri-infact angiogenesis, and worsens neurological deficits. Taken together, these molecular and in vivo findings support a previously undescribed mechanism of crosstalk between reactive astrocytes and EPCs wherein HMGB1 promotes neurovascular remodeling and functional recovery after stroke and brain injury.


Assuntos
Astrócitos/metabolismo , Células Endoteliais/metabolismo , Proteína HMGB1/metabolismo , Células-Tronco/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Western Blotting , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Infarto Cerebral/genética , Infarto Cerebral/metabolismo , Infarto Cerebral/fisiopatologia , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Proteína HMGB1/genética , Proteína HMGB1/farmacologia , Humanos , Imuno-Histoquímica , Interleucina-1beta/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo
19.
Sci Total Environ ; 927: 172266, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583615

RESUMO

Global climate change and anthropogenic oligotrophication are expected to reshape the dynamics of primary production (PP) in aquatic ecosystems; however, few studies have explored their long-term effects. In theory, the PP of phytoplankton in Lake Biwa may decline over decades due to warming, heightened stratification, and anthropogenic oligotrophication. Furthermore, the PP of large phytoplankton, which are inedible to zooplankton, along with biomass-specific productivity (PBc), could decrease. In this study, data from 1976 to 2021 and active fluorometry measurements taken in 2020 and 2021 were evaluated. Quantitatively, the temporal dynamics of mean seasonal PP during 1971-2021 were assessed according to the carbon fixation rate to investigate relationships among environmental factors. Qualitatively, phytoplankton biomass, PP, and PBc were measured in two size fractions [edible (S) or inedible (L) for zooplankton] in 2020 and 2021, and the L:S balance for these three measures was compared between 1992 (low-temperature/high-nutrient conditions) and 2020-2021 (high-temperature/low-nutrient conditions) to assess seasonal dynamics. The results indicated that climate change and anthropogenic oligotrophication over the past 30 years have diminished Lake Biwa's PP since the 1990s, impacting the phenology of PP dynamics. However, the L:S balance in PP and PBc has exhibited minimal change between the data from 1992 and the 2020-2021 period. These findings suggest that, although climate change and oligotrophication may reduce overall PP, they may not markedly alter the inedible/edible phytoplankton balance in terms of PP and PBc. Instead, as total PP declines, the production of small edible phytoplankton may decrease proportionally, potentially affecting trophic transfer efficiency and material cycling in Lake Biwa.


Assuntos
Mudança Climática , Monitoramento Ambiental , Lagos , Fitoplâncton , Lagos/química , Biomassa , Zooplâncton , Estações do Ano , Ecossistema
20.
Commun Biol ; 7(1): 229, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402351

RESUMO

Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, ß-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Vasos Linfáticos/fisiologia , Encéfalo/metabolismo , Sistema Linfático , Meninges
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA