Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
Nature ; 548(7668): 413-419, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28783728

RESUMO

Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous MYBPC3 mutation in human preimplantation embryos with precise CRISPR-Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response. Induced double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template. By modulating the cell cycle stage at which the DSB was induced, we were able to avoid mosaicism in cleaving embryos and achieve a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis. However, much remains to be considered before clinical applications, including the reproducibility of the technique with other heterozygous mutations.


Assuntos
Proteínas de Transporte/genética , Embrião de Mamíferos/metabolismo , Edição de Genes/métodos , Mutação/genética , Adulto , Alelos , Blastocisto/metabolismo , Blastocisto/patologia , Divisão Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Quebras de DNA de Cadeia Dupla , Embrião de Mamíferos/patologia , Marcação de Genes , Teste de Complementação Genética , Heterozigoto , Homozigoto , Humanos , Masculino , Mosaicismo , Reparo de DNA por Recombinação/genética , Fase S , Moldes Genéticos , Zigoto/metabolismo , Zigoto/patologia
3.
Nature ; 540(7632): 270-275, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27919073

RESUMO

Maternally inherited mitochondrial (mt)DNA mutations can cause fatal or severely debilitating syndromes in children, with disease severity dependent on the specific gene mutation and the ratio of mutant to wild-type mtDNA (heteroplasmy) in each cell and tissue. Pathogenic mtDNA mutations are relatively common, with an estimated 778 affected children born each year in the United States. Mitochondrial replacement therapies or techniques (MRT) circumventing mother-to-child mtDNA disease transmission involve replacement of oocyte maternal mtDNA. Here we report MRT outcomes in several families with common mtDNA syndromes. The mother's oocytes were of normal quality and mutation levels correlated with those in existing children. Efficient replacement of oocyte mutant mtDNA was performed by spindle transfer, resulting in embryos containing >99% donor mtDNA. Donor mtDNA was stably maintained in embryonic stem cells (ES cells) derived from most embryos. However, some ES cell lines demonstrated gradual loss of donor mtDNA and reversal to the maternal haplotype. In evaluating donor-to-maternal mtDNA interactions, it seems that compatibility relates to mtDNA replication efficiency rather than to mismatch or oxidative phosphorylation dysfunction. We identify a polymorphism within the conserved sequence box II region of the D-loop as a plausible cause of preferential replication of specific mtDNA haplotypes. In addition, some haplotypes confer proliferative and growth advantages to cells. Hence, we propose a matching paradigm for selecting compatible donor mtDNA for MRT.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/uso terapêutico , Herança Materna/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Terapia de Substituição Mitocondrial/métodos , Mutação , Oócitos/metabolismo , Blastocisto/citologia , Blastocisto/metabolismo , Linhagem Celular , Sequência Conservada/genética , DNA Mitocondrial/biossíntese , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Haplótipos/genética , Humanos , Masculino , Meiose , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/prevenção & controle , Doação de Oócitos , Oócitos/citologia , Oócitos/patologia , Fosforilação Oxidativa , Linhagem , Polimorfismo Genético
4.
EMBO J ; 36(15): 2177-2181, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28679504

RESUMO

Mitochondria, the ubiquitous power packs in nearly every eukaryotic cell, contain their own DNA, known as mtDNA, which is inherited exclusively from the mother. The number of mitochondrial genomes varies depending on the cell's energy needs. The mature oocyte contains the highest number of mitochondria of any cell type, although there is little if any mtDNA replication after fertilization until the embryo implants. This has potential repercussions for mitochondrial replacement therapy (MRT; see description of currently employed methods below) used to prevent the transmission of mtDNA-based disorders. If only a few mitochondria with defective mtDNA are left in the embryo and undergo extensive replication, it might therefore thwart the purpose of MRT In order to improve the safety and efficacy of this experimental therapy, we need a better understanding of how and which mtDNA is tagged for replication versus transcription after fertilization of the oocyte.


Assuntos
Replicação do DNA , Genoma Humano , Genoma Mitocondrial , Células Germinativas , Testamentos , Humanos , Terapia de Substituição Mitocondrial/métodos , Modelos Biológicos
5.
Nature ; 524(7564): 234-8, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26176921

RESUMO

Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.


Assuntos
DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Haplótipos/genética , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Camundongos , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Encefalomiopatias Mitocondriais/patologia , Mutação/genética , Técnicas de Transferência Nuclear , Nucleotídeos/genética , Consumo de Oxigênio , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA , Pele/citologia
6.
Gynecol Endocrinol ; 37(11): 1050-1053, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34304673

RESUMO

Cancer therapy has priority over fertility preservation. The time available for fertility preservation in patients with cancer is often very limited and depends on the condition of the underlying disease. This case report presents the results of two rounds of controlled ovarian stimulations (COSs) performed after an induced abortion. The patient had mixed phenotype acute leukemia diagnosed during early pregnancy and underwent a surgical abortion, followed by ovarian stimulation using urinary follicle-stimulating hormone (uFSH) and gonadotropin-releasing hormone (GnRH) agonists. Oocyte retrieval was subsequently performed for oocyte cryopreservation. Despite good hormonal and ultrasonic follicular growth, no oocytes were obtained. During a second COS performed at a low human chorionic gonadotropin (hCG) level (less than 100 IU/L), several mature oocytes were obtained, suggesting that higher hCG levels during COS induce the absence of mature oocytes during normal follicular growth. It is recommended to start COS post-abortion after confirming a low hCG level while considering the timing of cancer treatment.


Assuntos
Aborto Induzido , Preservação da Fertilidade , Recuperação de Oócitos , Indução da Ovulação , Feminino , Humanos , Luteinização , Gravidez , Adulto Jovem
7.
Biol Reprod ; 102(3): 607-619, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31621839

RESUMO

Heritable mitochondrial DNA (mtDNA) mutations are common, yet only a few recurring pathogenic mtDNA variants account for the majority of known familial cases in humans. Purifying selection in the female germline is thought to be responsible for the elimination of most harmful mtDNA mutations during oogenesis. Here we show that deleterious mtDNA mutations are abundant in ovulated mature mouse oocytes and preimplantation embryos recovered from PolG mutator females but not in their live offspring. This implies that purifying selection acts not in the maternal germline per se, but during post-implantation development. We further show that oocyte mtDNA mutations can be captured and stably maintained in embryonic stem cells and then reintroduced into chimeras, thereby allowing examination of the effects of specific mutations on fetal and postnatal development.


Assuntos
Blastocisto/metabolismo , DNA Mitocondrial/genética , Mutação , Oócitos/metabolismo , Animais , DNA Mitocondrial/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oogênese/genética
9.
Stem Cells ; 35(1): 26-34, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612640

RESUMO

Embryonic stem cells (ESC) hold promise for the treatment of human medical conditions but are allogeneic. Here, we consider the differences between autologous pluripotent stem cells produced by nuclear transfer (NT-ESCs) and transcription factor-mediated, induced pluripotent stem cells (iPSCs) that impact the desirability of each of these cell types for clinical use. The derivation of NT-ESCs is more cumbersome and requires donor oocytes; however, the use of oocyte cytoplasm as the source of reprogramming factors is linked to a key advantage of NT-ESCs-the ability to replace mutant mitochondrial DNA in a patient cell (due to either age or inherited disease) with healthy donor mitochondria from an oocyte. Moreover, in epigenomic and transcriptomic comparisons between isogenic iPSCs and NT-ESCs, the latter produced cells that more closely resemble bona fide ESCs derived from fertilized embryos. Thus, although NT-ESCs are more difficult to generate than iPSCs, the ability of somatic cell nuclear transfer to replace aged or diseased mitochondria and the closer epigenomic and transcriptomic similarity between NT-ESCs and bona fide ESCs may make NT-ESCs superior for future applications in regenerative medicine. Stem Cells 2017;35:26-34.


Assuntos
Células-Tronco Embrionárias/citologia , Técnicas de Transferência Nuclear , Animais , Ensaios Clínicos como Assunto , DNA Mitocondrial/genética , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo
12.
Mol Reprod Dev ; 83(6): 488-96, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27031189

RESUMO

Round spermatid injection (ROSI) into unfertilized oocytes enables a male with a severe spermatogenesis disorder to have children. One limitation of the application of this technique in the clinic is the identification and isolation of round spermatids from testis tissue. Here we developed an efficient and simple method to isolate rodent haploid round spermatids using flow cytometric cell sorting, based on DNA content (stained with Hoechst 33342 or Dye Cycle Violet) or by cell diameter and granularity (forward and side scatter). ROSI was performed with round spermatids selected by flow cytometry, and we obtained healthy offspring from unstained cells. This non-invasive method could therefore be an effective option for breeding domestic animals and human male infertility treatment. Mol. Reprod. Dev. 83: 488-496, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Citometria de Fluxo/métodos , Espermátides/citologia , Animais , Benzimidazóis/química , DNA/metabolismo , Masculino , Camundongos , Ratos , Ratos Wistar , Injeções de Esperma Intracitoplásmicas , Espermátides/metabolismo
13.
Biol Reprod ; 91(4): 89, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25165118

RESUMO

Primordial germ cells (PGCs) are germ cell progenitors in the fetal genital ridge; female PGCs give rise to definitive oocytes that contribute to the next generation. Artificial PGCs have been induced in vitro from pluripotent stem cells and gonad-like tissue has been induced in vivo by cotransplantation of PGCs with PGC-free gonadal cells. To apply these technologies to human infertility treatment or conservation of rare species, PGC transplantation must be established in xenogenic animals. Here, we established a xenogeneic transplantation model by inducing ovary-like tissue from PGCs in xenogenic animals. We transplanted enzymatically dispersed PGCs with PGC-free gonadal cells under the kidney capsule of xenogenic immunodeficient animals. The transplanted cells formed ovary-like tissues under the kidney capsule. These tissues were histologically similar to the normal gonad and expressed the oocyte markers Vasa and Stella. In addition, mouse germinal vesicle-stage oocyte-like cells collected from ovary-like tissue in rats matured to metaphase II via in vitro maturation and gave rise to offspring by intracytoplasmic sperm injection. Our studies show that rat/mouse female PGCs and PGC-free gonadal cells can develop and reconstruct ovary-like tissue containing functional oocytes in an ectopic xenogenic microenvironment.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Oócitos/fisiologia , Animais , Benzofuranos , Feminino , Células Germinativas , Xenoenxertos , Rim/citologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Oogênese/fisiologia , Quinolinas , Ratos , Ratos Endogâmicos , Transplante de Células-Tronco
14.
Front Cell Dev Biol ; 11: 1215626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635871

RESUMO

Introduction: Several healthy euploid births have been reported following the transfer of mosaic embryos, including both euploid and aneuploid blastomeres. This has been attributed to a reduced number of aneuploid cells, as previously reported in mice, but remains poorly explored in humans. We hypothesized that mitochondrial function, one of the most critical factors for embryonic development, can influence human post-implantation embryonic development, including a decrease of aneuploid cells in mosaic embryos. Methods: To clarify the role of mitochondrial function, we biopsied multiple parts of each human embryo and observed the remaining embryos under in vitro culture as a model of post-implantation development (n = 27 embryos). Karyotyping, whole mitochondrial DNA (mtDNA) sequencing, and mtDNA copy number assays were performed on all pre- and post-culture samples. Results: The ratio of euploid embryos was significantly enhanced during in vitro culture, whereas the ratio of mosaic embryos was significantly reduced. Furthermore, post-culture euploid and culturable embryos had significantly few mtDNA mutations, although mtDNA copy numbers did not differ. Discussion: Our results indicate that aneuploid cells decrease in human embryos post-implantation, and mtDNA mutations might induce low mitochondrial function and influence the development of post-implantation embryos with not only aneuploidy but also euploidy. Analyzing the whole mtDNA mutation number may be a novel method for selecting a better mosaic embryo for transfer.

15.
iScience ; 25(3): 103901, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243258

RESUMO

Cells transmit their genomes vertically to daughter cells during cell divisions. Here, we demonstrate the occurrence and extent of horizontal mitochondrial (mt)DNA acquisition between cells that are not in a parent-offspring relationship. Extensive single-cell sequencing from various tissues and organs of adult chimeric mice composed of cells carrying distinct mtDNA haplotypes showed that a substantial fraction of individual cardiomyocytes, neurons, glia, intestinal, and spleen cells captured donor mtDNA at high levels. In addition, chimeras composed of cells with wild-type and mutant mtDNA exhibited increased trafficking of wild-type mtDNA to mutant cells, suggesting that horizontal mtDNA transfer may be a compensatory mechanism to restore compromised mitochondrial function. These findings establish the groundwork for further investigations to identify mtDNA donor cells and mechanisms of transfer that could be critical to the development of novel gene therapies.

16.
Stem Cell Reports ; 11(4): 988-997, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30245211

RESUMO

In the case of organ transplantation accompanied by vascular anastomosis, major histocompatibility complex mismatched vascular endothelial cells become a target for graft rejection. Production of a rejection-free, transplantable organ, therefore, requires simultaneous generation of vascular endothelial cells within the organ. To generate pluripotent stem cell (PSC)-derived vascular endothelial cells, we performed blastocyst complementation with a vascular endothelial growth factor receptor-2 homozygous mutant blastocyst. This mutation is embryonic lethal at embryonic (E) day 8.5-9.5 due to an early defect in endothelial and hematopoietic cells. The Flk-1 homozygous knockout chimeric mice survived to adulthood for over 1 year without any abnormality, and all vascular endothelial cells and hematopoietic cells were derived from the injected PSCs. This approach could be used in conjunction with other gene knockouts which induce organ deficiency to produce a rejection-free, transplantable organ in which all the organ's cells and vasculature are PSC derived.


Assuntos
Blastocisto/citologia , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Envelhecimento/metabolismo , Animais , Blastocisto/metabolismo , Quimera , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Pericitos/citologia , Pericitos/metabolismo , Fenótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
PLoS One ; 13(7): e0201304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30040856

RESUMO

The accumulation of acquired mitochondrial genome (mtDNA) mutations with aging in somatic cells has been implicated in mitochondrial dysfunction and linked to age-onset diseases in humans. Here, we asked if somatic mtDNA mutations are also associated with aging in the mouse. MtDNA integrity in multiple organs and tissues in young and old (2-34 months) wild type (wt) mice was investigated by whole genome sequencing. Remarkably, no acquired somatic mutations were detected in tested tissues. However, we identified several non-synonymous germline mtDNA variants whose heteroplasmy levels (ratio of normal to mutant mtDNA) increased significantly with aging suggesting clonal expansion of inherited mtDNA mutations. Polg mutator mice, a model for premature aging, exhibited both germline and somatic mtDNA mutations whose numbers and heteroplasmy levels increased significantly with age implicating involvement in premature aging. Our results suggest that, in contrast to humans, acquired somatic mtDNA mutations do not accompany the aging process in wt mice.


Assuntos
Envelhecimento , DNA Mitocondrial/genética , Camundongos/genética , Mutação , Senilidade Prematura/genética , Senilidade Prematura/veterinária , Animais , DNA Polimerase gama/genética , Feminino , Células Germinativas/metabolismo , Masculino , Camundongos/embriologia , Camundongos/fisiologia , Camundongos Endogâmicos C57BL , Mitocôndrias/genética
20.
Cell Stem Cell ; 20(1): 112-119, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27840020

RESUMO

Oocyte defects lie at the heart of some forms of infertility and could potentially be addressed therapeutically by alternative routes for oocyte formation. Here, we describe the generation of functional human oocytes following nuclear transfer of first polar body (PB1) genomes from metaphase II (MII) oocytes into enucleated donor MII cytoplasm (PBNT). The reconstructed oocytes supported the formation of de novo meiotic spindles and, after fertilization with sperm, meiosis completion and formation of normal diploid zygotes. While PBNT zygotes developed to blastocysts less frequently (42%) than controls (75%), genome-wide genetic, epigenetic, and transcriptional analyses of PBNT and control ESCs indicated comparable numbers of structural variations and markedly similar DNA methylation and transcriptome profiles. We conclude that rescue of PB1 genetic material via introduction into donor cytoplasm may offer a source of oocytes for infertility treatment or mitochondrial replacement therapy for mtDNA disease.


Assuntos
Genoma Humano , Técnicas de Transferência Nuclear , Oócitos/metabolismo , Corpos Polares/metabolismo , Adulto , Blastocisto/metabolismo , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Epigênese Genética , Feminino , Fertilização in vitro , Perfilação da Expressão Gênica , Instabilidade Genômica , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Metáfase , Ploidias , Análise de Sequência de RNA , Espermatozoides/metabolismo , Fuso Acromático/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA