RESUMO
Individuals relying on natural resource extraction for their livelihood face high income variability driven by a mix of environmental, biological, management, and economic factors. Key to managing these industries is identifying how regulatory actions and individual behavior affect income variability, financial risk, and, by extension, the economic stability and the sustainable use of natural resources. In commercial fisheries, communities and vessels fishing a greater diversity of species have less revenue variability than those fishing fewer species. However, it is unclear whether these benefits extend to the actions of individual fishers and how year-to-year changes in diversification affect revenue and revenue variability. Here, we evaluate two axes by which fishers in Alaska can diversify fishing activities. We show that, despite increasing specialization over the last 30 years, fishing a set of permits with higher species diversity reduces individual revenue variability, and fishing an additional permit is associated with higher revenue and lower variability. However, increasing species diversity within the constraints of existing permits has a fishery-dependent effect on revenue and is usually (87% probability) associated with increased revenue uncertainty the following year. Our results demonstrate that the most effective option for individuals to decrease revenue variability is to participate in additional or more diverse fisheries. However, this option is expensive, often limited by regulations such as catch share programs, and consequently unavailable to many individuals. With increasing climatic variability, it will be particularly important that individuals relying on natural resources for their livelihood have effective strategies to reduce financial risk.
Assuntos
Pesqueiros/economia , Modelos Teóricos , Recursos Naturais , Fatores Socioeconômicos , Animais , Conservação dos Recursos Naturais , Ecossistema , Peixes , Humanos , Medição de Risco , Recursos HumanosRESUMO
Spatial closures like marine protected areas (MPAs) are prominent tools for ecosystem-based management in fisheries. However, the adaptive behavior of fishermen, the apex predator in the ecosystem, to MPAs may upset the balance of fishing impacts across species. While ecosystem-based management (EBM) emphasizes the protection of all species in the environment, the weakest stock often dominates management attention. We use data before and after the implementation of large spatial closures in a North Pacific trawl fishery to show how closures designed for red king crab protection spurred dramatic increases in Pacific halibut bycatch due to both direct displacement effects and indirect effects from adaptations in fishermen's targeting behavior. We identify aspects of the ecological and economic context of the fishery that contributed to these surprising behaviors, noting that many multispecies fisheries are likely to share these features. Our results highlight the need either to anticipate the behavioral adaptations of fishermen across multiple species in reserve design, a form of implementation error, or to design management systems that are robust to these adaptations. Failure to do so may yield patterns of fishing effort and mortality that undermine the broader objectives of multispecies management and potentially alter ecosystems in profound ways.
Assuntos
Braquiúros/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Pesqueiros/métodos , Peixes/fisiologia , Animais , Modelos Biológicos , Oceano Pacífico , Dinâmica Populacional , Fatores de TempoRESUMO
Decision-making agents face a fundamental trade-off between exploring new opportunities with risky outcomes versus exploiting familiar options with more certain but potentially suboptimal outcomes. Although mediation of this trade-off is essential to adaptive behavior and has for decades been assumed to modulate performance, the empirical consequences of human exploratory strategies are unknown beyond laboratory or theoretical settings. Leveraging 540,000 vessel position records from 2494 commercial fishing trips along with corresponding revenues, here we find that during undisturbed conditions, there was no relationship between exploration and performance, contrary to theoretical predictions. However, during a major disturbance event which closed the most-utilized fishing grounds, explorers benefited significantly from less-impacted revenues and were also more likely to continue fishing. We conclude that in stochastic natural systems characterized by non-stationary rewards, the role of exploration in buffering against disturbance may be greater than previously thought in humans.
Assuntos
Algoritmos , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Comportamento Exploratório/fisiologia , Modelos Teóricos , Animais , Pesqueiros/economia , Pesqueiros/estatística & dados numéricos , Golfo do México , Humanos , RecompensaRESUMO
Time spent fishing is the effort metric often studied in fisheries but it may under-represent the effort actually expended by fishers. Entire fishing trips, from the time vessels leave port until they return, may prove more useful for examining trends in fleet dynamics, fisher behavior, and fishing costs. However, such trip information is often difficult to resolve. We identified ~30,000 trips made by vessels that targeted walleye pollock (Gadus chalcogrammus) in the Eastern Bering Sea from 2008-2014 by using vessel monitoring system (VMS) and landings data. We compared estimated trip durations to observer data, which were available for approximately half of trips. Total days at sea were estimated with < 1.5% error and 96.4% of trip durations were either estimated with < 5% error or they were within expected measurement error. With 99% accuracy, we classified trips as fishing for pollock, for another target species, or not fishing. This accuracy lends strong support to the use of our method with unobserved trips across North Pacific fisheries. With individual trips resolved, we examined potential errors in datasets which are often viewed as "the truth." Despite having > 5 million VMS records (timestamps and vessel locations), this study was as much about understanding and managing data errors as it was about characterizing trips. Missing VMS records were pervasive and they strongly influenced our approach. To understand implications of missing data on inference, we simulated removal of VMS records from trips. Removal of records straightened (i.e., shortened) vessel trajectories, and travel distances were underestimated, on average, by 1.5-13.4% per trip. Despite this bias, VMS proved robust for trip characterization and for improved quality control of human-recorded data. Our scrutiny of human-reported and VMS data advanced our understanding of the potential utility and challenges facing VMS users globally.
Assuntos
Pesqueiros , Gadiformes , Algoritmos , Animais , Conservação dos Recursos Naturais , Estados do Pacífico , Estados UnidosRESUMO
Killer whale (Orcinus orca) depredation (whales stealing or damaging fish caught on fishing gear) adversely impacts demersal longline fisheries for sablefish (Anoplopoma fimbria), Pacific halibut (Hippoglossus stenolepis) and Greenland turbot (Reinhardtius hippoglossoides) in the Bering Sea, Aleutian Islands and Western Gulf of Alaska. These interactions increase direct costs and opportunity costs associated with catching fish and reduce the profitability of longline fishing in western Alaska. This study synthesizes National Marine Fisheries Service observer data, National Marine Fisheries Service sablefish longline survey and fishermen-collected depredation data to: 1) estimate the frequency of killer whale depredation on longline fisheries in Alaska; 2) estimate depredation-related catch per unit effort reductions; and 3) assess direct costs and opportunity costs incurred by longliners in western Alaska as a result of killer whale interactions. The percentage of commercial fishery sets affected by killer whales was highest in the Bering Sea fisheries for: sablefish (21.4%), Greenland turbot (9.9%), and Pacific halibut (6.9%). Average catch per unit effort reductions on depredated sets ranged from 35.1-69.3% for the observed longline fleet in all three management areas from 1998-2012 (p<0.001). To compensate for depredation, fishermen set additional gear to catch the same amount of fish, and this increased fuel costs by an additional 82% per depredated set (average $433 additional fuel per depredated set). In a separate analysis with six longline vessels in 2011 and 2012, killer whale depredation avoidance measures resulted in an average additional cost of $494 per depredated vessel-day for fuel and crew food. Opportunity costs of time lost by fishermen averaged $522 per additional vessel-day on the grounds. This assessment of killer whale depredation costs represents the most extensive economic evaluation of this issue in Alaska to date and will help longline fishermen and managers consider the costs and benefits of depredation avoidance and alternative policy solutions.