Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(1): 105-114, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33393307

RESUMO

A class of amino acid-based low-molecular-weight gelators (LMWGs) was used for single and multicomponent gel studies to investigate their tunable optical properties and their self-assembly process. The optical properties of multicomponent gels were found to be easily tuned by changing the proportion of the components, varying from opaque to highly transparent gels as analyzed using ultraviolet-visible spectroscopy. This phenomenon allows tunability without introducing another variable into the system. Scanning electron microscopy, differential scanning calorimetry, and small-angle X-ray scattering (SAXS) were used to investigate the structures of the gels. It was found that because of the structural similarities of the molecules, the gelators favor coassembly packing over self-sorting. The emergence of transparency was ascribed to changes in the fiber diameters. Moreover, analysis of the SAXS data allowed us to compare the molecular order present in the gel phase with single-crystal X-ray diffraction (SCXRD) data. Our analysis suggests that the packing of molecules seen in the crystalline phase is translated into the gel network. This reveals that the structure of the crystalline phase seen through SCXRD is a useful tool to aid in understanding the molecular packing in the gel phase.

2.
Soft Matter ; 15(42): 8611-8620, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31621749

RESUMO

The degree of ionisation of a weakly acidic surfactant can be continuously modified from nonionic to ionic by adjusting the pH. This property can be used to control the curvature and therefore the morphology of the self-assembled aggregates it forms in solution. Herein, we report the surprising phenomenon, observed in the alkyl ether oligo(ethylene oxide) carboxylate (CH3(CH2)11/13OEO4.5CH2COOH), whereby it is not only the pH but also the neutralisation rate that affects the aggregate morphology. Specifically, when the pH is increased slowly, up to 40 wt% of the surfactant remains in a long-lived vesicle state at high pH. This phenomenon was characterised in detail by small-angle neutron scattering and light scattering techniques. The cause of this phenomenon is thought to be related to a combination of polydispersity and the formation of acid-carboxylate dimers close to the pKa. The transition of these vesicles to the thermodynamically favoured micelles at high pH is inhibited by a high activation energy barrier and therefore only occurs very slowly. Increasing the NaCl concentration eliminates the presence of vesicles at high pH, demonstrating that the activation energy for the vesicle-to-micelle transition depends strongly on electrostatic interactions. These experiments show that the preparation pathway can be used to obtain different self-assembled structures at identical conditions via kinetic control. This phenomenon provides a useful tool for devising formulations where the properties of the system can be altered without changing the composition.

3.
J Am Chem Soc ; 140(49): 17127-17140, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30392357

RESUMO

Fiber-like block copolymer (BCP) micelles offer considerable potential for a variety of applications; however, uniform samples of controlled length and with spatially tailored chemistry have not been accessible. Recently, a seeded growth method, termed "living" crystallization-driven self-assembly (CDSA), has been developed to allow the formation of 1D micelles and block comicelles of precisely controlled dimensions from BCPs with a crystallizable segment. An expansion of the range of core-forming blocks that participate in living CDSA is necessary for this technique to be compatible with a broad range of applications. Few examples currently exist of well-defined, water-dispersible BCP micelles prepared using this approach, especially from biocompatible and biodegradable polymers. Herein, we demonstrate that BCPs containing a crystallizable polycarbonate, poly(spiro[fluorene-9,5'-[1,3]-dioxan]-2'-one) (PFTMC), can readily undergo living CDSA processes. PFTMC- b-poly(ethylene glycol) (PEG) BCPs with PFTMC:PEG block ratios of 1:11 and 1:25 were shown to undergo living CDSA to form near monodisperse fiber-like micelles of precisely controlled lengths of up to ∼1.6 µm. Detailed structural characterization of these micelles by TEM, AFM, SAXS, and WAXS revealed that they comprise a crystalline, chain-folded PFTMC core with a rectangular cross-section that is surrounded by a solvent swollen PEG corona. PFTMC- b-PEG fiber-like micelles were shown to be dispersible in water to give colloidally stable solutions. This allowed an assessment of the toxicity of these structures toward WI-38 and HeLa cells. From these experiments, we observed no discernible cytotoxicity from a sample of 119 nm fiber-like micelles to either healthy (WI-38) or cancerous (HeLa) cell types. The living CDSA process was extended to PFTMC- b-poly(2-vinylpyridine) (P2VP), and addition of this BCP to PFTMC- b-PEG seed micelles led to the formation of well-defined segmented fibers with spatially localized coronal chemistries.

4.
Soft Matter ; 13(33): 5535-5542, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28795175

RESUMO

Here X-ray reflectivity has been used to determine the structure of liquid crystal monolayers for different cyanobiphenyl homologues supported on aqueous solutions of two different salt species. Sodium iodide induces homeotropic ordering for all of the monolayer forming liquid crystal homologues studied here, and forms a Stern layer of iodide ions at the liquid crystal cyano headgroup, similar to the case of lipids or surfactants supported on electrolyte solutions. The liquid crystal headgroups were also found to penetrate into the water surface when binding with iodide ions. Sodium bromide, however, does not form the same localisation of ions close to a liquid crystal monolayer, and instead appears to produce no noticeable change in the scattering length density of the liquid crystal monolayer compared to pure water. However, on further compression the X-ray reflectivity dramatically changes, revealing the emergence of the so-called "trilayer" structure for 5CB and 8CB. This transition occurs at a lower areal density for sodium bromide than for pure water, and unlike for the uncompressed film, a layer of bromide ions was found at the trilayer-water interface.

5.
J Am Chem Soc ; 138(12): 4087-95, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26878261

RESUMO

Self-assembled "cross" architectures are well-known in biological systems (as illustrated by chromosomes, for example); however, comparable synthetic structures are extremely rare. Herein we report an in depth study of the hierarchical assembly of the amphiphilic cylindrical P-H-P triblock comicelles with polar (P) coronal ends and a hydrophobic (H) central periphery in a selective solvent for the terminal segments which allows access to "cross" supermicelles under certain conditions. Well-defined P-H-P triblock comicelles M(PFS-b-PtBA)-b-M(PFS-b-PDMS)-b-M(PFS-b-PtBA) (M = micelle segment, PFS = polyferrocenyldimethylsilane, PtBA = poly(tert-butyl acrylate), and PDMS = polydimethylsiloxane) were created by the living crystallization-driven self-assembly (CDSA) method. By manipulating two factors in the supermicelles, namely the H segment-solvent interfacial energy (through the central H segment length, L1) and coronal steric effects (via the PtBA corona chain length in the P segment, L2 related to the degree of polymerization DP2) the aggregation of the triblock comicelles could be finely tuned. This allowed a phase-diagram to be constructed that can be extended to other triblock comicelles with different coronas on the central or end segment where "cross" supermicelles were exclusively formed under predicted conditions. Laser scanning confocal microscopy (LSCM) analysis of dye-labeled "cross" supermicelles, and block "cross" supermicelles formed by addition of a different unimer to the arm termini, provided complementary characterization to transmission electron microscopy (TEM) and dynamic light scattering (DLS) and confirmed the existence of these "cross" supermicelles as kinetically stable, micron-size colloidally stable structures in solution.

6.
J Am Chem Soc ; 138(13): 4484-93, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27049840

RESUMO

Cylindrical block copolymer micelles have shown considerable promise in various fields of biomedical research. However, unlike spherical micelles and vesicles, control over their dimensions in biologically relevant solvents has posed a key challenge that potentially limits in depth studies and their optimization for applications. Here, we report the preparation of cylindrical micelles of length in the wide range of 70 nm to 1.10 µm in aqueous media with narrow length distributions (length polydispersities <1.10). In our approach, an amphiphilic linear-brush block copolymer, with high potential for functionalization, was synthesized based on poly(ferrocenyldimethylsilane)-b-poly(allyl glycidyl ether) (PFS-b-PAGE) decorated with triethylene glycol (TEG), abbreviated as PFS-b-(PEO-g-TEG). PFS-b-(PEO-g-TEG) cylindrical micelles of controlled length with low polydispersities were prepared in N,N-dimethylformamide using small seed initiators via living crystallization-driven self-assembly. Successful dispersion of these micelles into aqueous media was achieved by dialysis against deionized water. Furthermore, B-A-B amphiphilic triblock comicelles with PFS-b-poly(2-vinylpyridine) (P2VP) as hydrophobic "B" blocks and hydrophilic PFS-b-(PEO-g-TEG) "A" segments were prepared and their hierarchical self-assembly in aqueous media studied. It was found that superstructures formed are dependent on the length of the hydrophobic blocks. Quaternization of P2VP was shown to cause the disassembly of the superstructures, resulting in the first examples of water-soluble cylindrical multiblock comicelles. We also demonstrate the ability of the triblock comicelles with quaternized terminal segments to complex DNA and, thus, to potentially function as gene vectors.


Assuntos
Micelas , Polietilenoglicóis/química , Polímeros/química , Compostos de Epóxi/química , Modelos Moleculares , Poliestirenos/química , Polivinil/química , Piridinas/química
7.
Angew Chem Int Ed Engl ; 55(38): 11392-6, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27511301

RESUMO

Precise control over the morphology and dimensions of block copolymer (BCP) micelles has attracted interest due to the potential of this approach to generate functional nanostructures. Incorporation of liquid crystalline (LC) block can provide additional ways to vary micellar morphologies, but the formation of uniform micelles with controllable dimensions from LC BCPs has not yet been realized. Herein, we report the preparation of monodisperse cylindrical micelles with a LC poly(2-(perfluorooctyl)ethyl methacrylate (PFMA) core via a fragmentation-thermal annealing (F-TA) process, resembling the "self-seeding" process of crystalline BCP micelles. The average length of the cylinders increases with annealing temperature, with a narrow length distribution (Lw /Ln <1.1). We also demonstrate the potential application of the cylinders with LC cores as a cargo-carrier by the successful incorporation of a hydrophobic fluorescent dye tagged with a fluorooctyl group.

8.
Acta Crystallogr D Struct Biol ; 78(Pt 10): 1249-1258, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189744

RESUMO

The static structure factor and the undulation dynamics of a solid-supported membrane stack have previously been calculated by Romanov and Ul'yanov [Romanov & Ul'yanov (2002). Phys. Rev. E, 66, 061701]. Based on this prior work, the calculation has been extended to cover the membrane dynamics, i.e. the intermediate scattering function as a Fourier transform of the van Hove correlation function of the membrane stack. Fortran code which calculates the intermediate scattering function for a membrane stack on a solid support is presented. It allows the static and dynamic scattering functions to be calculated according to the derivation of Romanov and Ul'yanov. The physical properties of supported phospholipid bilayers can be examined in this way and the results can be directly compared with results obtained from grazing-incidence neutron spin-echo spectroscopy experiments.


Assuntos
Bicamadas Lipídicas , Difração de Nêutrons , Bicamadas Lipídicas/química , Fosfolipídeos/química , Análise Espectral
9.
Rev Sci Instrum ; 92(3): 033903, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820030

RESUMO

A new sample environment is introduced for the study of soft matter samples in electric fields using small-angle neutron scattering instruments. The sample environment is temperature controlled and features external electrodes, allowing standard quartz cuvettes to be used and conducting samples or samples containing ions to be investigated without the risk of electrochemical reactions occurring at the electrodes. For standard 12.5 mm quartz cuvettes, the maximum applied field is 8 kV/cm, and the applied field may be static or alternating (up to 10 kHz for 8 kV/cm and up to 60 kHz for 4 kV/cm). The electric fields within the sample are calculated and simulated under a number of different conditions, and the capabilities of the setup are demonstrated using a variety of liquid crystalline samples. Measurements were performed as a function of temperature and time spent in the electric field. Finally, the advantages, drawbacks, and potential optimization of the sample environment are discussed with reference to applications in the fields of complex soft matter, biology, and electrorheology.

10.
ChemSusChem ; 13(3): 601-607, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769195

RESUMO

Nonionic ethylene oxide (EO)-based surfactants are widely employed in commercial applications and normally form gel-like liquid crystalline phases at higher concentrations, rendering their handling under such conditions difficult. By incorporating CO2 units in their hydrophilic head groups, the consumption of the petrochemical EO was reduced, and the tendency to form liquid crystals was suppressed completely. This surprising behavior was characterized by rheology and studied with respect to its structural origin by means of small-angle neutron scattering (SANS). These experiments showed a strongly reduced repulsive interaction between the micellar aggregates, attributed to a reduced hydration and enhanced interpenetration of the head groups owing to the presence of the CO2 units. In addition, with increasing CO2 content the surfactants became more efficient and effective with respect to their surface activity. These findings are important because the renewable resource CO2 is used, and the CO2 -containing surfactants allow handling at very high concentrations, an aspect of enormous practical importance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA