Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 20(4): e1011235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648200

RESUMO

Tumor-associated macrophages (TAM) subtypes have been shown to impact cancer prognosis and resistance to immunotherapy. However, there is still a lack of systematic investigation into their molecular characteristics and clinical relevance in different cancer types. Single-cell RNA sequencing data from three different tumor types were used to cluster and type macrophages. Functional analysis and communication of TAM subpopulations were performed by Gene Ontology-Biological Process and CellChat respectively. Differential expression of characteristic genes in subpopulations was calculated using zscore as well as edgeR and Wilcoxon rank sum tests, and subsequently gene enrichment analysis of characteristic genes and anti-PD-1 resistance was performed by the REACTOME database. We revealed the heterogeneity of TAM, and identified eleven subtypes and their impact on prognosis. These subtypes expressed different molecular functions respectively, such as being involved in T cell activation, apoptosis and differentiation, or regulating viral bioprocesses or responses to viruses. The SPP1 pathway was identified as a critical mediator of communication between TAM subpopulations, as well as between TAM and epithelial cells. Macrophages with high expression of SPP1 resulted in poorer survival. By in vitro study, we showed SPP1 mediated the interactions between TAM clusters and between TAM and tumor cells. SPP1 promoted the tumor-promoting ability of TAM, and increased PDL1 expression and stemness of tumor cells. Inhibition of SPP1 attenuated N-cadherin and ß-catenin expression and the activation of AKT and STAT3 pathway in tumor cells. Additionally, we found that several subpopulations could decrease the sensitivity of anti-PD-1 therapy in melanoma. SPP1 signal was a critical pathway of communication between macrophage subtypes. Some specific macrophage subtypes were associated with immunotherapy resistance and prognosis in some cancer types.


Assuntos
Neoplasias , Osteopontina , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Prognóstico , Neoplasias/imunologia , Neoplasias/genética , Osteopontina/genética , Osteopontina/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Análise de Célula Única , Transdução de Sinais , Macrófagos/imunologia , Macrófagos/metabolismo , Comunicação Celular/imunologia
2.
Apoptosis ; 29(9-10): 1499-1514, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38853202

RESUMO

Ovarian cancer is a malignant tumor originating from the ovary, characterized by its high mortality rate and propensity for recurrence. In some patients, especially those with recurrent cancer, conventional treatments such as surgical resection or standard chemotherapy yield suboptimal results. Consequently, there is an urgent need for novel anti-cancer therapeutic strategies. Ferroptosis is a distinct form of cell death separate from apoptosis. Ferroptosis inducers have demonstrated promising potential in the treatment of ovarian cancer, with evidence indicating their ability to enhance ovarian cancer cell sensitivity to cisplatin. However, resistance of cancer cells to ferroptosis still remains an inevitable challenge. Here, we analyzed genome-scale CRISPR-Cas9 loss-of function screens and identified PAX8 as a ferroptosis resistance protein in ovarian cancer. We identified PAX8 as a susceptibility gene in GPX4-dependent ovarian cancer. Depletion of PAX8 rendered GPX4-dependent ovarian cancer cells significantly more sensitive to GPX4 inhibitors. Additionally, we found that PAX8 inhibited ferroptosis in ovarian cancer cells. Combined treatment with a PAX8 inhibitor and RSL3 suppressed ovarian cancer cell growth, induced ferroptosis, and was validated in a xenograft mouse model. Further exploration of the molecular mechanisms underlying PAX8 inhibition of ferroptosis mutations revealed upregulation of glutamate-cysteine ligase catalytic subunit (GCLC) expression. GCLC mediated the ferroptosis resistance induced by PAX8 in ovarian cancer. In conclusion, our study underscores the pivotal role of PAX8 as a therapeutic target in GPX4-dependent ovarian cancer. The combination of PAX8 inhibitors such as losartan and captopril with ferroptosis inducers represents a promising new approach for ovarian cancer therapy.


Assuntos
Ferroptose , Glutationa , Neoplasias Ovarianas , Fator de Transcrição PAX8 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ensaios Antitumorais Modelo de Xenoenxerto , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Glutationa/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistemas CRISPR-Cas , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Carbolinas
3.
Apoptosis ; 29(5-6): 663-680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598070

RESUMO

Cancer cachexia-associated muscle wasting as a multifactorial wasting syndrome, is an important factor affecting the long-term survival rate of tumor patients. Photobiomodulation therapy (PBMT) has emerged as a promising tool to cure and prevent many diseases. However, the effect of PBMT on skeletal muscle atrophy during cancer progression has not been fully demonstrated yet. Here, we found PBMT alleviated the atrophy of myotube diameter induced by cancer cells in vitro, and prevented cancer-associated muscle atrophy in mice bearing tumor. Mechanistically, the alleviation of muscle wasting by PBMT was found to be involved in inhibiting E3 ubiquitin ligases MAFbx and MuRF-1. In addition, transcriptomic analysis using RNA-seq and GSEA revealed that PI3K/AKT pathway might be involved in PBMT-prevented muscle cachexia. Next, we showed the protective effect of PBMT against muscle cachexia was totally blocked by AKT inhibitor in vitro and in vivo. Moreover, PBMT-activated AKT promoted FoxO3a phosphorylation and thus inhibiting the nucleus entry of FoxO3a. Lastly, in cisplatin-treated muscle cachexia model, PBMT had also been shown to ameliorate muscle atrophy through enhancing PI3K/AKT pathway to suppress MAFbx and MuRF-1 expression. These novel findings revealed that PBMT could be a promising therapeutic approach in treating muscle cachexia induced by cancer.


Assuntos
Caquexia , Proteína Forkhead Box O3 , Doenças Musculares , Neoplasias , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Síndrome de Emaciação , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/terapia , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Doenças Musculares/terapia , Neoplasias/complicações , Redes e Vias Metabólicas , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Síndrome de Emaciação/etiologia , Síndrome de Emaciação/metabolismo , Síndrome de Emaciação/terapia , Animais , Modelos Animais de Doenças , Camundongos , Linhagem Celular , Masculino , Camundongos Endogâmicos BALB C , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA