Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Am Chem Soc ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968087

RESUMO

Molecule-inclusive closed cage compounds present a unique platform for molecular motion in an isolated environment. This study showcases the incorporation of a tadpole-like polar molecule (1-propyl-1H-imidazole, PIm) into a supramolecular cage formed by duad semicage p-tert-butylcalix[4]arene. The ferroelectric phase transition as well as the cage-confined motion of encapsulated PIm was studied in detail. The unusual quadrastable state of the PIm in the paraelectric phase allows for the modulation of dipolar polarization over a broad temperature/frequency range. This compound represents the first example of a clathrate molecular ferroelectric featuring a molecule-inclusive supramolecular cage, and it also contributes to the understanding of cage-confined molecular dynamics.

2.
Inorg Chem ; 63(12): 5761-5768, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38485515

RESUMO

The reasonably constructed high-performance electrocatalyst is crucial to achieve sustainable electrocatalytic water splitting. Alloying is a prospective approach to effectively boost the activity of metal electrocatalysts. However, it is a difficult subject for the controllable synthesis of small alloying nanostructures with high dispersion and robustness, preventing further application of alloy catalysts. Herein, we propose a well-defined molecular template to fabricate a highly dispersed NiRu alloy with ultrasmall size. The catalyst presents superior alkaline hydrogen evolution reaction (HER) performance featuring an overpotential as low as 20.6 ± 0.9 mV at 10 mA·cm-2. Particularly, it can work steadily for long periods of time at industrial-grade current densities of 0.5 and 1.0 A·cm-2 merely demanding low overpotentials of 65.7 ± 2.1 and 127.3 ± 4.3 mV, respectively. Spectral experiments and theoretical calculations revealed that alloying can change the d-band center of both Ni and Ru by remodeling the electron distribution and then optimizing the adsorption of intermediates to decrease the water dissociation energy barrier. Our research not only demonstrates the tremendous potential of molecular templates in architecting highly active ultrafine nanoalloy but also deepens the understanding of water electrolysis mechanism on alloy catalysts.

3.
Phys Chem Chem Phys ; 26(9): 7269-7275, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38193864

RESUMO

On the basis of variable-temperature single-crystal X-ray diffraction, rotational energy barrier analysis, variable-temperature/frequency dielectric response, and molecular dynamics simulations, here we report a new crystalline supramolecular rotor (CH3NH3)(18-crown-6)[CuCl3], in which the (H3C-NH3)+ ion functions as a smallest dual-wheel rotator showing bisected rotation dynamics, while the host 18-crown-6 macrocycle behaves as a stator that is not strictly stationary. This study also provides a helpful insight into the dynamics of ubiquitous -CH3/-NH3 groups confined in organic or organic-inorganic hybrid solids.

4.
Phys Chem Chem Phys ; 26(5): 3974-3980, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38221866

RESUMO

On the basis of variable-temperature single-crystal X-ray diffraction, variable-temperature/frequency dielectric analysis, variable-temperature solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, here we present a new model of crystalline supramolecular rotor (i-PrNHMe2)[CdBr3], where a conformationally flexible near-spherical (i-PrNHMe2)+ cation functions as a rotator and a rod-like anionic coordination polymer {[CdBr3]-}∞ acts as the stator, and the adhesion of them is realized by charge-assisted hydrogen bonds.

5.
J Am Chem Soc ; 145(36): 20000-20008, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37610355

RESUMO

Advances in single-atom (-site) catalysts (SACs) provide a new solution of atomic economy and accuracy for designing efficient electrocatalysts. In addition to a precise local coordination environment, controllable spatial active structure and tolerance under harsh operating conditions remain great challenges in the development of SACs. Here, we show a series of molecule-spaced SACs (msSACs) using different acid anhydrides to regulate the spatial density of discrete metal phthalocyanines with single Co sites, which significantly improve the effective active-site numbers and mass transfer, enabling one of the msSACs connected by pyromellitic dianhydride to exhibit an outstanding mass activity of (1.63 ± 0.01) × 105 A·g-1 and TOFbulk of 27.66 ± 1.59 s-1 at 1.58 V (vs RHE) and long-term durability at an ultrahigh current density of 2.0 A·cm-2 under industrial conditions for oxygen evolution reaction. This study demonstrates that the accessible spatial density of single atom sites can be another important parameter to enhance the overall performance of catalysts.

6.
J Am Chem Soc ; 145(2): 1144-1154, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36538569

RESUMO

Remolding the reactivity of metal active sites is critical to facilitate renewable electricity-powered water electrolysis. Doping heteroatoms, such as Se, into a metal crystal lattice has been considered an effective approach, yet usually suffers from loss of functional heteroatoms during harsh electrocatalytic conditions, thus leading to the gradual inactivation of the catalysts. Here, we report a new heteroatom-containing molecule-enhanced strategy toward sustainable oxygen evolution improvement. An organoselenium ligand, bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide containing robust C-Se-C covalent bonds equipped in the precatalyst of ultrathin metal-organic nanosheets Co-SeMON, is revealed to significantly enhance the catalytic mass activity of the cobalt site by 25 times, as well as extend the catalyst operation time in alkaline conditions by 1 or 2 orders of magnitude compared with these reported metal selenides. A combination of various in situ/ex situ spectroscopic techniques, ab initio molecular dynamics, and density functional theory calculations unveiled the organoselenium intensified mechanism, in which the nonclassical bonding of Se to O-containing intermediates endows adsorption-energy regulation beyond the conventional scaling relationship. Our results showcase the great potential of molecule-enhanced catalysts for highly efficient and economical water oxidation.


Assuntos
Cobalto , Metais , Adsorção , Oxigênio , Água
7.
Inorg Chem ; 62(7): 3297-3304, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36758163

RESUMO

Remodeling the active surface through fabricating heterostructures can substantially enhance alkaline water electrolysis driven by renewable electrical energy. However, there are still great challenges in the synthesis of highly reactive and robust heterostructures to achieve both ampere-level current density hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a new Co/CeO2 heterojunction self-supported electrode for sustainable overall water splitting. The self-supporting Co/CeO2 heterostructures required only low overpotentials of 31.9 ± 2.2, 253.3 ± 2.7, and 316.7 ± 3 mV for HER and 214.1 ± 1.4, 362.3 ± 1.9, and 400.3 ± 3.7 mV for OER at 0.01, 0.5, and 1.0 A·cm-2, respectively, being one of the best Co-based bifunctional electrodes. Electrolyzer constructed from this electrode acting as an anode and cathode merely required cell voltages of 1.92 ± 0.02 V at 1.0 A·cm-2 for overall water splitting. Multiple characterization techniques combined with density functional theory calculations disclosed the different active sites on the anode and cathode, and the charge redistributions on the heterointerfaces that can optimize the adsorption of H and oxygen-containing intermediates, respectively. This study presents the tremendous prospective of self-supporting heterostructures for effective and economical overall water splitting.

8.
Inorg Chem ; 61(18): 7201-7206, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35476414

RESUMO

Here, we report a weakly bound ionic cocrystal, (Et3NCH2Cl)2[ZnCl4], which undergoes a reversible structural phase transition owing to the switched molecular dynamics of the quasi-spherical (Et3NCH2Cl)+ cation from static to dynamic. Interestingly, a unique rolling and moving mechanism is uncovered for such a cation in the high-temperature phase, where its two methylene groups exhibit different kinetic energy barriers. This study provides a meaningful insight into the solid-state molecular dynamics of large-size quasi-spherical molecules that contain both a rigid core and flexible shell.

9.
Inorg Chem ; 61(9): 4143-4149, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35192767

RESUMO

In recent years, molecular perovskite energetic materials have attracted more attention because of their simple synthesis processes, high thermal stabilities, excellent performances, and great significance as a design platform for energetic materials. To explore the possibility of the application of molecular perovskite energetic materials in heat-resistant explosives, four silver(I)-based molecular perovskite energetic compounds, (H2A)[Ag(ClO4)3], where H2A = piperazine-1,4-diium (H2pz2+) for PAP-5, 1-methyl-piperazine-1,4-diium (H2mpz2+) for PAP-M5, homopiperazine-1,4-diium (H2hpz2+) for PAP-H5, and 1,4-diazabicyclo[2.2.2]octane-1,4-diium (H2dabco2+) for DAP-5, were synthesized by a one-pot self-assembly strategy and structurally characterized. The single-crystal structures indicated that PAP-5, PAP-M5, and DAP-5 possess cubic perovskite structures while PAP-H5 possesses a hexagonal perovskite structure. Differential thermal analyses showed that their onset decomposition temperatures are >308.3 °C. For PAP-5 and DAP-5, they have not only exceptional calculated detonation parameters (D values of 8.961 and 8.534 km s-1 and P values of 42.4 and 37.9 GPa, respectively) but also the proper mechanical sensitivity (impact sensitivities of ≤10 J for PAP-5 and 3 J for DAP-5 and friction sensitivities of ≤5N for both PAP-5 and DAP-5) and thus are of interest as potential heat-resistant primary explosive components.

10.
Inorg Chem ; 60(14): 10596-10602, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34176268

RESUMO

A novel metal-organic framework (MOF) of [Co8(OH)4(TCA)4(H2O)4]n (abbreviation: JXNU-9) based on the unique octanuclear Co8(µ3-OH)4 clusters linked by 4,4',4″-nitrilotribenzoate (TCA3-) ligands featuring small caged structures and one-dimensional channels was prepared and characterized. JXNU-9 shows a high C2H6 uptake capacity of 3.60 mmol g-1 (4.46 mmol cm-3) at 298 K and 1 atm with a small isosteric heat of adsorption (23.6 kJ mol-1) and a moderate C2H6/C2H4 adsorption selectivity of 1.7, resulting in excellent C2H6/C2H4 separation performance. The pore walls decorated by plenty of aromatic rings provide π-electron-cloud-surrounding environments to accommodate the large polarizable C2H6 molecules. The calculations demonstrate that the rich π-systems in JXNU-9 facilitate an adsorption affinity for large C2H6 molecules through multiple C-H···π interactions. Additionally, the open metal sites located in the concave pores with a close Co···Co separation (4.21 Å) in octanuclear Co8(µ3-OH)4 clusters make the open metal sites inaccessible for the C2H4 molecule with a kinetic diameter of 4.163 Å. Thus, the annihilation of open metal sites in this structure is achieved, which further facilitates the C2H6-selective C2H6/C2H4 separation.

11.
Inorg Chem ; 60(5): 3365-3374, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570389

RESUMO

The development of oxygen evolution reaction (OER) catalysts with high activity and high stability through convenient and economical methods is greatly important for the promotion of hydrogen energy based on electrolysis technology. Herein, by using an unconventional high electrodeposition potential, novel petal-like clusters constructed by cross-linking ultrathin nickel hydroxide nanosheets were controllably synthesized on nickel foam (or copper foam or carbon cloth) and the effect of electrodeposition conditions on their OER performance was carefully explored. Due to the abundant catalytically active sites, promoting electron conduction/mass transmission from the specific micro-nano structure, as well as the ultrasmall thickness of ∼3.0 nm, the optimized α-Ni(OH)2/NF self-supporting electrode exhibits excellent electrocatalytic performance for OER, merely requiring low overpotentials of 192 and 240 mV to yield current densities of 10 and 100 mA cm-2 in 1.0 M KOH, respectively, which surpassed those of all of the reported nickel hydroxide/oxides and the benchmark RuO2. Moreover, α-Ni(OH)2/NF can drive the high-current density (500-1000 mA cm-2) OER at low overpotentials, meeting the requirements of potential industrial applications.

12.
Org Biomol Chem ; 19(2): 457-466, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33336677

RESUMO

An efficient approach to access functionalized (2,3-dihydroisoxazol-4-yl) ketones has been developed by reacting nitrones 4 with ynones 7 or terminal ynones 10 in a one-pot fashion. The reaction went through a formal Sc(OTf)3-catalyzed [3 + 2]-cycloaddition process to generate a number of functionalized (2,3-dihydroisoxazol-4-yl) ketones 11aa-11aw, 11ba-11la and 12aa-12ae in moderate to good yields.

13.
Nano Lett ; 20(5): 3442-3448, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32324412

RESUMO

Designing low-cost, high-efficiency, platinum-free electrocatalysts for the hydrogen oxidation reaction (HOR) in an alkaline electrolyte is of great importance for the development of anion exchange membrane fuel cells. Herein, we report a novel HOR catalyst, RuNi1, in which Ni is atomically dispersed on the Ru nanocrystals. To note, the as-prepared RuNi1 catalyst exhibits excellent catalytic activity and stability for HOR in alkaline media, which is superior to those of Ru-Ni bimetallic nanocrystals, pristine Ru, and commercial Pt/C catalysts. Density functional theory (DFT) calculations suggest that isolation of Ni atoms on Ru nanocrystals not only optimizes the hydrogen-binding energy but also decreases the free energy of water formation, thus leading to excellent electrocatalytic activity of RuNi1 catalyst. The results show that engineering a catalyst at an atomic level is highly effective for rational design of electrocatalysts with high performance.

14.
J Am Chem Soc ; 142(45): 19339-19345, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33119303

RESUMO

Photocatalytic reduction of CO2 to value-added fuels is a promising route to reduce global warming and enhance energy supply. However, poor selectivity and low efficiency of catalysts are usually the limiting factor of their applicability. Herein, a photoinduction method was developed to achieve the formation of Cu single atoms on a UiO-66-NH2 support (Cu SAs/UiO-66-NH2) that could significantly boost the photoreduction of CO2 to liquid fuels. Notably, the developed Cu SAs/UiO-66-NH2 achieved the solar-driven conversion of CO2 to methanol and ethanol with an evolution rate of 5.33 and 4.22 µmol h-1 g-1, respectively. These yields were much higher than those of pristine UiO-66-NH2 and Cu nanoparticles/UiO-66-NH2 composites. Theoretical calculations revealed that the introduction of the Cu SAs on the UiO-66-NH2 greatly facilitates the conversion of CO2 to CHO* and CO* intermediates, leading to excellent selectivity toward methanol and ethanol. This study provides new insights for designing high-performance catalyst for photocatalytic reduction of CO2 at the atomic scale.

15.
J Am Chem Soc ; 142(39): 16861-16867, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32924470

RESUMO

Electrocatalysis of the four-electron oxygen reduction reaction (ORR) provides a promising approach for energy conversion, storage, and oxygen monitoring. However, it is always accompanied by the reduction of hydrogen peroxide (H2O2) on most employed catalysts, which brings down the electrocatalytic selectivity. Here, we report a single-atom Co-N4 electrocatalyst for the four-electron ORR at an onset potential of 0.68 V (vs RHE) in neutral media while with high H2O2 tolerance, outperforming commercial Pt electrocatalysts. Electrochemical kinetic analysis confirms that the Co-N4 catalytic sites dominantly promote the direct four-electron pathway of the ORR rather than the two sequential two-electron reduction pathways with H2O2 as the intermediate. Density functional theory calculations reveal that H2O2 reduction is hampered by the weak adsorption of H2O2 on the porphyrin-like Co centers. This endows the electrocatalyst with improved resistance to current interference from H2O2, enabling highly selective O2 sensing as validated by the reliable sensing performance in vivo. Our study demonstrates the intriguing advantage of single-atom catalysts with high capacity for tailoring metal-adsorbate interactions, broadening their applications in environmental and life monitoring.

16.
Nat Mater ; 18(9): 994-998, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308517

RESUMO

Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal-organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption-desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties.

17.
Inorg Chem ; 59(6): 4030-4036, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32118410

RESUMO

A novel fluorinated biphenyldicarboxylate ligand of 3,3',5,5'-tetrafluorobiphenyl-4,4'-dicarboxylic acid (H2-TFBPDC) and its terbium metal-organic framework, {[Tb2(TFBPDC)3(H2O)]·4.5DMF·0.5H2O}n (denoted as JXNU-6), were synthesized. JXNU-6 exhibits a three-dimensional (3D) framework built from one-dimensional (1D) terbium carboxylate helical chains bridged by TFBPDC2- linkers. The 3D framework of JXNU-6 features 1D fluorine-lined channels. The gas adsorption experiments show that the activated JXNU-6 (JXNU-6a) displays distinct adsorption behavior for propyne (C3H4) and propylene (C3H6) gases. The effective removal of a trace amount of C3H4 from C3H6 was achieved by JXNU-6a under ambient conditions, which is demonstrated by the column-breakthrough experiments. The modeling studies show that the preferential binding sites for C3H4 are the exposed F atoms on the pore surface in 1D channels. The strong C-H···F hydrogen bonds between C3H4 molecules and F atoms of TFBPDC2- ligands dominate the host-guest interactions, which mainly account for the excellent C3H4/C3H6 separation performance of JXNU-6a. This work provides a strategy for specific recognition toward C3H4 over C3H6 through the C-H···F hydrogen bond associated with the fluorinated organic ligand.

18.
Angew Chem Int Ed Engl ; 59(51): 23322-23328, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32897617

RESUMO

Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen-bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2-13. The seemingly rigid adsorbent shows a pore-opening or nonporous-to-porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co-adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single-crystal X-ray diffraction and computational simulations reveal that a trivial guest-induced structural transformation plays a critical role.

19.
Inorg Chem ; 58(8): 5089-5095, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30916556

RESUMO

Compound {(Me2NH2)3[Eu7(µ3-O)2(TBAPy)5(H2O)6]·12.5DMF} n (JXNU-5), constructed from the 1,3,6,8-tetrakis(4-carboxylphenyl)pyrene (TBAPy4-) ligand and one-dimensional (1D) europium carboxylate rods, is presented. JXNU-5 has a three-dimensional framework with 1D channels. The strong coordination bonds between EuIII ions with high charge densities and carboxylate O atoms as well as strong π···π-stacking interactions between pyrenes lead to a water-resistant JXNU-5, which was verified by powder X-ray diffraction and surface area measurements. The breakthrough simulations and experiments demonstrate that an efficient C2H2/CO2 (50/50 mixture) gas separation at ambient conditions was achieved with JXNU-5. The calculation results show that the dominating interactions between the absorbed C2H2 molecules and host framework are hydrogen bonds associated with the carboxylate O atoms exposed on the pores. Thus, an elegant example of a water-stable metal-organic framework for effective C2H2/CO2 separation is demonstrated.

20.
Angew Chem Int Ed Engl ; 58(1): 139-143, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30320948

RESUMO

Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non-3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4 (MO4 )(eim)6 ] (M=Mo or W, Heim=2-ethylimidazole) having Co(eim)3 (MO4 ) units and high water stabilities were designed and synthesized. In different neutral media, the Mo-modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm-2 at an overpotential of 210 mV in CO2 -saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm-2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non-precious metal catalysts and even outperforms RuO2 . Spectroscopic measurements and computational simulations revealed that the non-3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate-determining step to a more moderate value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA