RESUMO
Bauxite residues are a mass of industrial wastes derived from aluminum metallurgy. This work provided a simple pyrolysis method to magnetize the bauxite residue to serve as a magnetic adsorbent towards heavy metals removal. The X-ray diffraction patterns and Mossbauer spectrum results confirmed the partial reduction of iron species with an obvious enhancement in magnetization. The magnetized bauxite residue exhibited excellent removal efficiencies for Cu2+, Cd2+ and Pb2+ with maximum adsorption capacities of 219.0 mg g-1, 275.4 mg g-1, and 100.4 mg g-1, which could be quickly separated through a magnet. The adsorption equilibrium data were fitted to the Langmuir isotherm model, while the adsorption kinetics followed a pseudo-first-order model. According to the characterization results, chemical precipitation and sorption was the major mechanism for the removal of Cu2+, Pb2+, and Cd2+. Thus, the magnetized bauxite residue exhibited promising applications for heavy metals removal in wastewater.
RESUMO
In this study, a novel poly ligand exchanger-Zn(II)-loaded resin was designed to effectively remove ammonia-nitrogen (NH3-N) from wastewater. The surface morphology and structure of the Zn-loaded resin were characterized using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Fourier transform infrared spectroscopy (FTIR), respectively. SEM shows the surfaces of the Zn(II)-loaded resin were rough and nonporous and EDS demonstrated that Zn2+ was loaded onto the resin successfully. In addition, the combination form of Zn(II) with NH3-N adsorption reagent was revealed by FTIR spectra; the complex could be R-N-R-O-Zn-O-R-N-R and R-N-R-(O-Zn)2. The kinetics and equilibrium of the NH3-N adsorption onto the Zn(II)-loaded resin has been investigated. The effects of pH, reaction time, and temperature on NH3-N removal from wastewater by Zn(II)-loaded resin were investigated, and the results showed that the maximum adsorption capacity reached 38.55 mg/g at pH 9.54 at 298 K in 240 min. The adsorption ability of the modified resin decreased with an increase in temperature. Moreover, the NH3-N adsorption followed a pseudo-second-order kinetic process. The kinetic data demonstrated that the adsorption process might be limited by a variety of mechanisms. The study can provide the scientific foundation for the extensive application of a novel poly ligand exchanger-Zn(II)-loaded resin to remove NH3-N from wastewater.
Assuntos
Amônia/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Adsorção , Quelantes/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Nitrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/químicaRESUMO
Large amounts of titanium white waste are generated in the production of titanium dioxide using sulphate method, which in turn can be used to prepare LiFePO4 cathode material, thereby reducing environmental risks and achieving resource recovery. However, a key challenge lies in the elimination of impurities. In this work, a cost-efficient and straightforward approach based on phase transformation during hydrothermal treatment was proposed to utilize titanium white waste with calcium dihydrogen phosphate for the preparation of LiFePO4 cathode material. The content of Fe in the leachate was enriched to 81.5 g/L after purification, while 99.9 % of Ti and 98.36 % of Al and were successfully removed. In the subsequent process for Fe/P mother liquor preparation, the losses of Fe and P were only 5.82 % and 2.81 %, respectively. The Fe and P contents of the synthesized FePO4 product were 29.47 % and 17.08 %, respectively, and the Fe/P molar ratio was 0.986. Crystal phase of the product matched well with standard iron phosphate, and the lamellar microstructure of FePO4 was uniform with the particle size ranging from 3 to 5 µm. Moreover, the contents of impurities in the product were far below the standard. The initial discharge of LiFePO4 synthesized by the iron phosphate was 160.6 mAh.g-1 at 0.1C and maintained good reversible capacity after 100 cycles. This work may provide new strategy for preparing LiFePO4 cathode material from industrial solid waste.
Assuntos
Fosfatos de Cálcio , Compostos Férricos , Ferro , Lítio , Titânio , Ferro/química , Lítio/química , Cálcio , Fosfatos/química , EletrodosRESUMO
The comprehensive recovery of iron and aluminum from iron-rich bauxite residue (IRBR) is of critical importance both in terms of resource utilization and environment protection, which, however, is challenging due to the intertwined phases between Iron and aluminum. In this study, an integrated phase reconstruction approach, consisting of alkali roasting, two-stage column leaching, and carbonation decomposition, was proposed for Fe/Al recovery from IRBR. The results demonstrated that aluminum and sodium were fused into soluble substances such as sodium aluminate (Na7Al3O8, NaAlO2, and Na2O (Al2O3)11) in the alkali roasting process, allowing for the separation of Al and Fe in the subsequent leaching process. Following water/FeCl3 solution leaching, the removal efficiency of aluminum reached 84.66%, and Fe content in the residue could be enriched to 55.56%. Fe can be recycled as iron concentrate, and Al in the leaching solution with 75.95 g/L can be recovered in the form of Al(OH)3 through carbonation decomposition. This work provides an alternative strategy for the recovery of resources from IRBR, with potential implications for the sustainable development of the aluminum industry.
RESUMO
This work presents the preparation and property characterization of a biomass gelatin (GA)-based aerogel. Halloysite nanotubes (HNTs) were used to improve the mechanical strength, pore size distribution, and thermal stability of the aerogel. Polyethyleneimine (PEI) and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) were utilized to increase the interfacial interaction between HNTs and GA through chemical cross-linking. Green, sustainable, and low-cost composite aerogels were prepared by "cogel" and freeze-drying techniques. The experimental results show that the HNTs/GA composite aerogel has a low density (31.98-57.48 mg/cm3), a high porosity (>95%), a low thermal conductivity (31.85-40.16 mW m-1 K-1), and superior moldability. In addition, the mechanical strength and thermal insulation properties of the HNTs/GA composite aerogels with a "thorn"-like lamellar porous network structure are different in the axial direction versus the radial direction. The maximum compressive strength, maximum compressive modulus, and corresponding specific modulus in the axial direction were 1.81 MPa, 5.45 MPa, and 94.8 kN m kg-1, respectively. Therefore, the biomass/clay composite aerogel will be a sustainable and renewable functional material with high mechanical strength and thermal insulation properties, which is expected to further promote biomass and clay for high value utilization.
RESUMO
As, Cu, and Zn rich leaching liquor is generated in the leaching process of copper dust, which contains various metals with high recovery value. Herein, an approach for the direct separation and recovery of arsenic from As, Cu, and Zn rich leaching liquor was proposed. The approach includes two steps, namely SO2 reduction and arsenic crystallization. The factors affecting the reduction of As(v) to As(iii) were investigated, including the pH, SO2 dosage, and reduction temperature. In the crystallization stage, the impacts of sulfuric acid consumption and temperature on the crystallization of arsenic (As2O3) were studied. The results show that the optimal H+ concentration, temperature, and SO2 input for the arsenic reduction were 3.95 mol L-1, 45 °C, and 1.14 L g-1 As(v), respectively. While the optimal temperature and sulfuric acid dosage in As recovery process were 5 °C and 0.1 L L-1 leaching liquor, respectively. Under these conditions, the As2O3 recovery percentage reached 96.53%, and the losses of Cu and Zn were only 3.12% and 0.75%, respectively. The precipitate contained 96.72% of As2O3, 0.83% of Cu, and 0.13% Zn. Compared with the traditional technologies, this new method can improve the recovery efficiency of As2O3 and reduce the loss percentage of other valuable metals (Cu and Zn).
RESUMO
In this work, CuWO4 is prepared and its effect of improving photocatalytic degradation of atrazine by TiO2 as well as the synergetic mechanism is studied. Results show that the addition of CuWO4 (50 mg/L) into the reaction system can significantly enhance the efficiency of atrazine degradation, resulting in an increased degradation efficiency of 92.1% after 270 min, which is 1.94 times higher than that of the single TiO2. As the sintering temperate of CuWO4 was increased, the degradation efficiency of atrazine increased initially and then deceased after reaching a maximum at 500 °C. The origin of the synergistic effect of TiO2-CuWO4 is attributed to the introduction of solid CuWO4. The photochemical test results indicate that the photogenerated electrons transfer from irradiated TiO2 to CuWO4, which is beneficial to the O2 reduction and H2O2 formation in aqueous solution thus promoting the photocatalytic activity of TiO2. These observations unveil the importance of improving photocatalytic activity of TiO2 with Cu-bearing semiconductors.
Assuntos
Atrazina/química , Herbicidas/química , Modelos Químicos , Processos Fotoquímicos , Titânio/química , Atrazina/análise , Catálise , Cobre/química , Herbicidas/análise , Peróxido de Hidrogênio , Óxidos/química , Tungstênio/químicaRESUMO
This study is to apply ultrasound to remove m-xylene, a volatile compound from aqueous solutions which causes environmental damage. High frequency ultrasound was used to investigate the effect of different operational parameters, such as m-xylene initial concentration, ultrasonic frequency and ultrasonic power. The degradation rate of m-xylene was increased with decreasing initial concentration of m-xylene and increasing frequency and power. Optimal conditions include 26.07 mg/L, 806.3 kHz and 70±1 W, in which MnO(2), Cu(2+), Fe(2+), and H(2)O(2) had little or no effect on the degradation. Moreover, the effect of radical scavengers such as Na(2)CO(3) and t-butyl was not obvious, which indicates that direct pyrolysis inside the collapsing bubbles has an important role in m-xylene ultrasonic removal. In addition, the degradation of m-xylene was observed to behave under pseudo-first-order kinetics with different experimental conditions tested in the present work.
Assuntos
Sonicação/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Xilenos/química , Xilenos/isolamento & purificação , Doses de Radiação , Soluções , Poluentes Químicos da Água/efeitos da radiação , Xilenos/efeitos da radiaçãoRESUMO
The degradation of azo dye wastewater, containing MX-5B, was investigated by using high frequency ultrasonic irradiation. The effect of different factors like the initial pH of solution, sonolysis parameters, air-blowing, Fe2+ concentration were studied, the synergistic action of complex frequency and the mechanism of degradation was explored primarily. The results show that MX-5B in aqueous solution can be degraded efficiently by ultrasonic irradiation, when the pH 3.5, ultrasonic frequency 418.3 kHz, ultrasonic power 69 W, color removal rate up to 100% in 180 min. Adding of Fe2+ and blowing air had some effects. The results also indicated that radical-oxidation controlled the ultrasonic decompose of MX-5B and MX-5B ultrasonic removal was observed to behave as pseudo-first-order kinetics under different experimental conditions tested in the present work. Comparison of UV-Vis absorption spectrums before and after treatment showed that all of the conjugate structure and part of aromatic structure were destroyed after being ultrasonic irradiation.