Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Plant Biol ; 21(1): 82, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557748

RESUMO

BACKGROUND: Fusarium crown rot is major disease in wheat. However, the wheat defense mechanisms against this disease remain poorly understood. RESULTS: Using tandem mass tag (TMT) quantitative proteomics, we evaluated a disease-susceptible (UC1110) and a disease-tolerant (PI610750) wheat cultivar inoculated with Fusarium pseudograminearum WZ-8A. The morphological and physiological results showed that the average root diameter and malondialdehyde content in the roots of PI610750 decreased 3 days post-inoculation (dpi), while the average number of root tips increased. Root vigor was significantly increased in both cultivars, indicating that the morphological, physiological, and biochemical responses of the roots to disease differed between the two cultivars. TMT analysis showed that 366 differentially expressed proteins (DEPs) were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment in the two comparison groups, UC1110_3dpi/UC1110_0dpi (163) and PI610750_3dpi/PI610750_0dpi (203). It may be concluded that phenylpropanoid biosynthesis (8), secondary metabolite biosynthesis (12), linolenic acid metabolites (5), glutathione metabolism (8), plant hormone signal transduction (3), MAPK signaling pathway-plant (4), and photosynthesis (12) contributed to the defense mechanisms in wheat. Protein-protein interaction network analysis showed that the DEPs interacted in both sugar metabolism and photosynthesis pathways. Sixteen genes were validated by real-time quantitative polymerase chain reaction and were found to be consistent with the proteomics data. CONCLUSION: The results provided insight into the molecular mechanisms of the interaction between wheat and F. pseudograminearum.


Assuntos
Resistência à Doença/genética , Fusarium/patogenicidade , Variação Genética , Genótipo , Doenças das Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Grão Comestível/genética , Grão Comestível/microbiologia , Proteômica , Triticum/microbiologia
2.
Mol Genet Genomics ; 296(6): 1249-1262, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34426888

RESUMO

Leaf is the major photosynthesis organ and the key source of wheat (Triticum aestivum L.) grain. Spotted leaf (spl) mutant is a kind of leaf lesion mimic mutants (LMMs) in plants, which is an ideal material for studying the mechanisms of leaf development. In this study, we report the leaf abnormal development molecular mechanism of a spl mutant named white stripe leaf (wsl) derived from wheat cultivar Guomai 301 (WT). Histochemical observation indicated that the leaf mesophyll cells of the wsl were destroyed in the necrosis regions. To explore the molecular regulatory network of the leaf development in mutant wsl, we employed transcriptome analysis, histochemistry, quantitative real-time PCR (qRT-PCR), and observations of the key metabolites and photosynthesis parameters. Compared to WT, the expressions of the chlorophyll synthesis and photosynthesis-related homeotic genes were repressed; many genes in the WRKY transcription factor (TF) families were highly expressed; the salicylic acid (SA) and Ca2+ signal transductions were enhanced in wsl. Both the chlorophyll contents and the photosynthesis rate were lower in wsl. The contents of SA and reactive oxygen species (ROS) were significantly higher, and the leaf rust resistance was enhanced in wsl. Based on the experimental data, a primary molecular regulatory model for leaf development in wsl was established. The results indicated that the SA accumulation and enhanced Ca2+ signaling led to programmed cell death (PCD), and ultimately resulted in spontaneous leaf necrosis of wsl. These results laid a solid foundation for further research on the molecular mechanism of leaf development in wheat.


Assuntos
Apoptose/genética , Cálcio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Triticum/genética , Apoptose/fisiologia , Clorofila/biossíntese , Perfilação da Expressão Gênica , Proteínas Nucleares/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Doenças das Plantas/genética , Folhas de Planta/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
3.
Conscious Cogn ; 65: 95-108, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30092502

RESUMO

Temporal concepts could be represented horizontally(X-axis) or vertically (Y-axis). However, whether the spatial representation of time exists in the whole plane remains unclear. In this study, we investigated whether processing temporal concepts would automatically activate spatial representations in a whole plane without any guidance or cue. Participants first indicated whether a word was past-related or future-related, then, they identified a target in different visual fields. In Experiment 1, the results demonstrated that past time mapped onto the left and top in a plane or axis, while future time mapped onto the right and bottom, with the horizontal effect being stronger than the vertical effect. In Experiment 2, an index of eye movement showed a similar data pattern. Thinking about temporal concepts activates spatial schema automatically without guidance or cue, and the time-space metaphor is represented not only as an axis but also as a whole plane. The results were discussed in terms of the possible cultural differences that made the Chinese participants tend to be more flexible in spatial representation of time because of their comprehensive thinking.


Assuntos
Metáfora , Percepção Espacial/fisiologia , Pensamento/fisiologia , Tempo , Adulto , China , Formação de Conceito/fisiologia , Humanos , Desempenho Psicomotor/fisiologia , Leitura , Adulto Jovem
4.
Appetite ; 107: 86-92, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27457969

RESUMO

Recent studies suggest that when inhibitory control is lacking, people are more inclined to indulge in high-calorie food, but inhibitory control can be trained. In this study, a daily-life training game was used to train children and investigate whether strengthening or weakening inhibitory control influences food intake in opposite directions. The baseline of response inhibition was measured by the go/no-go task, and the baseline of food intake was measured by a bogus food taste task. Then, participants performed a food selection training game named "Happy goat says" with three within-subject conditions: the first type of instruction was always paired without a go signal (inhibition manipulation); the second type of instruction was always presented with a go signal (impulsivity manipulation); and the third type of instruction was presented either with a go or no-go signal, both in 50% of the time (control manipulation). Following these manipulations, they went through the go/no-go task and bogus food taste task. In the pre-training food taste task, commission errors were positively correlated with body mass index. Relative to a control group playing Lego blocks (n = 20), the trained group showed a performance improvement on the go/no-go task. The intake of food in the inhibition manipulation was significantly less in the post-training food taste task. These findings demonstrate that children can gain control over the consumption of high-calorie food after a daily-life response inhibition training game.


Assuntos
Comportamento de Escolha , Preferências Alimentares/psicologia , Inibição Psicológica , Índice de Massa Corporal , Criança , Comportamento Infantil/psicologia , China , Dieta/psicologia , Ingestão de Alimentos/psicologia , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Comportamento Impulsivo , Masculino , Paladar
5.
Psychol Res Behav Manag ; 16: 1521-1532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143903

RESUMO

Purpose: Evaluating face attractiveness is a core aspect of face perception, which plays an important role in impression formation. A more reliable source of information in impression formation is moral behavior, which forms the primary basis for the comprehensive evaluation of others. Previous studies have found that one can easily form an association when faces and moral behaviors are presented together, which in turn affects facial attractiveness evaluation. However, little is known of the extent to which these learned associations affect facial attractiveness and whether the influence of moral behavior on facial attractiveness was related to facial appearance. Methods: We used the associative learning paradigm and manipulated face presentation duration (Experiment 1 and Experiment 2) and response deadline (Experiment 2) to investigate these issues. Under these conditions, the association information was difficult to be retrieved. Participants learned associations between faces and scenes of moral behavior, and then evaluated facial attractiveness. Results: We found that both moral behavior and facial appearance influence facial attractiveness under conditions where associated information was difficult to retrieve, and their effects increased with the increase of face presentation time. With increasing response deadlines, the effect of moral behavior on facial attractiveness increased. The influence of moral behavior on facial attractiveness was associated with facial appearance. Conclusion: These results suggest that moral behavior continuously affects facial attractiveness. Our findings expand previous research by showing a robust influence of moral behavior on facial attractiveness evaluation, and highlight the important role of moral character in impression formation.

6.
Gene ; 856: 147134, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36586497

RESUMO

Chlorophyll (Chl) is a key pigment for wheat (Triticum aestivum L.) photosynthesis, consequently impacts grain yield. A wheat mutant named as delayed virescence 4 (dv4) was obtained from cultivar Guomai 301 (wild type, WT) treated with ethyl methane sulfonate (EMS). The seedling leaves of dv4 were shallow yellow, apparently were chlorophyll deficient. They started to turn green at the jointing stage and returned to almost ordinary green at the heading stage. Leaf transcriptome comparison of Guomai 301 and dv4 at the jointing stage showed that most differentially expressed genes (DEGs) of transcription and translation were highly expressed in dv4, one key gene nicotianamine aminotransferase A (NAAT-A) involved in the synthesis and metabolism pathways of tyrosine, methionine and phenylalanine was significantly lowly expressed. The expression levels of the most photosynthesis related genes, such as photosystem I (PS I), ATPase and light-harvesting chlorophyll protein complex-related homeotypic genes, and protochlorophyllide reductase A (PORA) were lower; but macromolecule degradation and hypersensitivity response (HR) related gene heat shock protein 82 (HSP82) was highly expressed. Compared to WT, the contents of macromolecules such as proteins and sugars were reduced; the contents of Chl a, Chl b, total Chl, and carotenoids in leaves of dv4 were significantly less at the jointing stage, while the ratio of Chl a / Chl b was the same as that of WT. The net photosynthetic rate, stomatal conductance and transpiration rate of dv4 were significantly lower. The H2O2 content were higher, while the contents of total phenol and malondialdehyde (MDA), antioxidant enzyme activities were lower in leaves of dv4. In conclusion, the reduced contents of macromolecules and photosynthetic pigments, the abnormal photosynthetic and antioxidant systems were closely related to the phenotype of dv4.


Assuntos
Antioxidantes , Triticum , Triticum/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese/genética , Clorofila/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
7.
Plant Physiol Biochem ; 204: 108121, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866063

RESUMO

Exogenous strigolactones (SLs, GR24) are widely used to alleviate drought stress in wheat. The physiological and biochemical mechanisms via which SLs help overcome drought stress in wheat shoots have been reported; however, the mechanisms in wheat roots are unclear. The present study explored the effects of the exogenous application of SLs on wheat roots' growth and molecular responses under drought stress using physiological analysis and RNA-seq. RNA-seq of roots showed that SLs mainly upregulated signal transduction genes (SIS8, CBL3, GLR2.8, LRK10L-2.4, CRK29, and CRK8) and transcription factors genes (ABR1, BHLH61, and MYB93). Besides, SLs upregulated a few downstream target genes, including antioxidant genes (PER2, GSTF1, and GSTU6), cell wall biogenesis genes (SUS4, ADF3, UGT13248, UGT85A24, UGT709G2, BGLU31, and LAC5), an aquaporin-encoding gene (TIP4-3), and dehydrin-encoding genes (DHN2, DHN3, and DHN4). As a result, SLs reduced oxidative damage, optimized root architecture, improved leaf-water relation, and alleviated drought damage. Thus, the present study provides novel insights into GR24-mediated drought stress management and a scientific basis for proposing GR24 application.


Assuntos
Secas , Triticum , Triticum/fisiologia , Lactonas/farmacologia , Parede Celular
8.
Antioxidants (Basel) ; 12(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37891963

RESUMO

Drought poses a significant challenge to global wheat production, and the application of exogenous phytohormones offers a convenient approach to enhancing drought tolerance of wheat. However, little is known about the molecular mechanism by which strigolactones (SLs), newly discovered phytohormones, alleviate drought stress in wheat. Therefore, this study is aimed at elucidating the physiological and molecular mechanisms operating in wheat and gaining insights into the specific role of SLs in ameliorating responses to the stress. The results showed that SLs application upregulated the expression of genes associated with the antioxidant defense system (Fe/Mn-SOD, PER1, PER22, SPC4, CAT2, APX1, APX7, GSTU6, GST4, GOR, GRXC1, and GRXC15), chlorophyll biogenesis (CHLH, and CPX), light-harvesting chlorophyll A-B binding proteins (WHAB1.6, and LHC Ib-21), electron transfer (PNSL2), E3 ubiquitin-protein ligase (BB, CHIP, and RHY1A), heat stress transcription factor (HSFA1, HSFA4D, and HSFC2B), heat shock proteins (HSP23.2, HSP16.9A, HSP17.9A, HSP21, HSP70, HSP70-16, HSP70-17, HSP70-8, HSP90-5, and HSP90-6), DnaJ family members (ATJ1, ATJ3, and DJA6), as well as other chaperones (BAG1, CIP73, CIPB1, and CPN60I). but the expression level of genes involved in chlorophyll degradation (SGR, NOL, PPH, PAO, TIC55, and PTC52) as well as photorespiration (AGT2) was found to be downregulated by SLs priming. As a result, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced, and chlorophyll content and photosynthetic rate were increased, which indicated the alleviation of drought stress in wheat. These findings demonstrated that SLs alleviate drought stress by promoting photosynthesis through enhancing chlorophyll levels, and by facilitating ROS scavenging through modulation of the antioxidant system. The study advances understandings of the molecular mechanism underlying SLs-mediated drought alleviation and provides valuable insights for implementing sustainable farming practice under water restriction.

9.
Foods ; 11(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407021

RESUMO

Interest has been growing in the role of subjective aesthetics in the field of food. This study explored the mechanisms by which the aesthetic appeal of plate patterns influences consumers' perceptions of food. Three experiments were conducted to compare whether different levels of beauty and types of plate pattern aesthetics (classical versus expressive) affected the perceptions of tastiness and healthiness of the food offered. Experiment 1 was carried out with 30 participants, and the results showed that participants perceived the food presented on more beautiful plates as tastier and healthier than the food on less beautiful plates. Experiment 2 was carried out with 128 participants; the results showed that, for expressively aesthetic plates, the participants experienced more positive emotions for very beautiful plates and more negative emotions for less beautiful plates. However, for classical aesthetic plates, participants' emotions were not affected by the beauty of the plate. Experiment 3 was carried out with 149 participants, and the results showed that, for classically aesthetic plates, participants perceived the food placed in the middle to be tastier than food placed at the edge; however, for expressively aesthetic plates, food placement did not affect participants' perceptions of food. These results demonstrate the importance of the subjective beauty of plate patterns in influencing consumers' food perceptions, although this influence varies depending on the type of aesthetic design of the plate pattern.

10.
Front Plant Sci ; 13: 939544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247556

RESUMO

The radicle, present in the embryo of a seed, is the first root to emerge at germination, and its rapid growth is essential for establishment and survival of the seedling. However, there are few studies on the critical mechanisms underlying radicle and then radicle length in wheat seedlings, despite its importance as a food crop throughout the world. In the present study, 196 wheat accessions from the Huanghuai Wheat Region were screened to measure radicle length under 4 hydroponic culture environments over 3 years. Different expression genes and proteins (DEGs/DEPs) between accessions with extremely long [Yunong 949 (WRL1), Zhongyu 9,302 (WRL2)] and short roots [Yunong 201 (WRS1), Beijing 841 (WRS2)] were identified in 12 sets of root tissue samples by RNA-seq and iTRAQ (Isobaric tags for relative and absolute quantification). Phenotypic results showed that the elongation zone was significantly longer in root accessions with long roots compared to the short-rooted accessions. A genome-wide association study (GWAS) identified four stable chromosomal regions significantly associated with radicle length, among which 1A, 4A, and 7A chromosomes regions explained 7.17% to12.93% of the phenotypic variation. The omics studies identified the expression patterns of 24 DEGs/DEPs changed at both the transcriptional and protein levels. These DEGs/DEPs were mainly involved in carbon fixation in photosynthetic organisms, photosynthesis and phenylpropanoid biosynthesis pathways. TraesCS1A02G104100 and TraesCS2B02G519100 were involved in the biosynthesis of tricin-lignins in cell walls and may affect the extension of cell walls in the radicle elongation zone. A combination of GWAS and RNA-seq analyses revealed 19 DEGs with expression changes in the four accessions, among which, TraesCS1A02G422700 (a cysteine-rich receptor-like protein kinase 6, CRK6) also showed upregulation in the comparison group by RNA-seq, iTRAQ, and qRT-PCR. BSMV-mediated gene silencing also showed that TaCRK6 improves root development in wheat. Our data suggest that TaCRK6 is a candidate gene regulating radicle length in wheat.

11.
PeerJ ; 9: e10617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552717

RESUMO

To set a systematic study of the Sorghum cystatins (SbCys) gene family, a genome-wide analysis of the SbCys family genes was performed by bioinformatics-based methods. In total, 18 SbCys genes were identified in Sorghum, which were distributed unevenly on chromosomes, and two genes were involved in a tandem duplication event. All SbCys genes had similar exon/intron structure and motifs, indicating their high evolutionary conservation. Transcriptome analysis showed that 16 SbCys genes were expressed in different tissues, and most genes displayed higher expression levels in reproductive tissues than in vegetative tissues, indicating that the SbCys genes participated in the regulation of seed formation. Furthermore, the expression profiles of the SbCys genes revealed that seven cystatin family genes were induced during Bipolaris sorghicola infection and only two genes were responsive to aphid infestation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that 17 SbCys genes were induced by one or two abiotic stresses (dehydration, salt, and ABA stresses). The interaction network indicated that SbCys proteins were associated with several biological processes, including seed development and stress responses. Notably, the expression of SbCys4 was up-regulated under biotic and abiotic stresses, suggesting its potential roles in mediating the responses of Sorghum to adverse environmental impact. Our results provide new insights into the structural and functional characteristics of the SbCys gene family, which lay the foundation for better understanding the roles and regulatory mechanism of Sorghum cystatins in seed development and responses to different stress conditions.

12.
Acta Psychol (Amst) ; 219: 103385, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34455180

RESUMO

How does aging affect facial attractiveness? We tested the hypothesis that people find older faces less attractive than younger faces, and furthermore, that these aging effects are modulated by the age and sex of the perceiver and by the specific kind of attractiveness judgment being made. Using empirical and computational network science methods, we confirmed that with increasing age, faces are perceived as less attractive. This effect was less pronounced in judgments made by older than younger and middle-aged perceivers, and more pronounced by men (especially for female faces) than women. Attractive older faces were perceived as elegant more than beautiful or gorgeous. Furthermore, network analyses revealed that older faces were more similar in attractiveness and were segregated from younger faces. These results indicate that perceivers tend to process older faces categorically when making attractiveness judgments. Attractiveness is not a monolithic construct. It varies by age, sex, and the dimensions of attractiveness being judged.


Assuntos
Beleza , Face , Envelhecimento , Feminino , Humanos , Julgamento , Masculino , Pessoa de Meia-Idade
13.
Front Genet ; 12: 646712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178022

RESUMO

Plant roots are critical for water and nutrient acquisition, environmental adaptation, and yield formation. Herein, 196 wheat accessions from the Huang-Huai Wheat Region of China were collected to investigate six root traits at seedling stage under three growing environments [indoor hydroponic culture (IHC), outdoor hydroponic culture (OHC), and outdoor pot culture (OPC)] and the root dry weight (RDW) under OPC at four growth stages and four yield traits in four environments. Additionally, a genome-wide association study was performed with a Wheat 660K SNP Array. The results showed that the root traits varied most under OPC, followed by those under both OHC and IHC, and root elongation under hydroponic culture was faster than that under pot culture. Root traits under OHC might help predict those under OPC. Moreover, root traits were significantly negatively correlated with grain yield (GY) and grains per spike (GPS), positively correlated with thousand-kernel weight (TKW), and weakly correlated with number of spikes per area (SPA). Twelve stable chromosomal regions associated with the root traits were detected on chromosomes 1D, 2A, 4A, 4B, 5B, 6D, and unmapped markers. Among them, a stable chromosomal interval from 737.85 to 742.00 Mb on chromosome 4A, which regulated total root length (TRL), was identified under three growing environments. Linkage disequilibrium (LD) blocks were used to identify 27 genes related to root development. Three genes TraesCS4A02G484200, TraesCS4A02G484800, TraesCS4A02G493800, and TraesCS4A02G493900, are involved in cell elongation and differentiation and expressed at high levels in root tissues. Another vital co-localization interval on chromosome 5B (397.72-410.88 Mb) was associated with not only RDW under OHC and OPC but also TKW.

14.
Front Psychol ; 11: 680, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477200

RESUMO

The Attentional Spatial Numerical Association of Response Codes (Att-SNARC) effect has shown that number perception induces shifts in spatial attention (Fischer et al., 2003; Dodd et al., 2008). However, many replications were attempted and they often failed. In the present study, we investigated whether the Att-SNARC effect can be found for numbers in different notations: months in Arabic form, Simplified Chinese form, Traditional Chinese form (includes numerical ordinal information) and in Chinese non-numerical form (an ordinal sequence). By varying the cognitive task, we also examined whether the effect is a consequence of automatic perceptual processing. In Experiment 1, an Att-SNARC effect was observed for numbers regardless of notation. In Experiment 2 (order-irrelevant task) and Experiment 3 (order-relevant task), the effect was also found consistently for months in Arabic form, Simplified Chinese form, and Traditional Chinese form. This effect was not observed for months in Chinese non-numerical form in Experiment 3. These results show that number and numerical sequence perception automatically causes a spatial shift of attention. Our study provides positive evidence for the Att-SNARC effect and indicates that the effect can generalize to other numerical ordinal sequences that contain numeric information.

15.
Front Plant Sci ; 11: 602399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505411

RESUMO

The root of wheat consists of seminal and nodal roots. Comparatively speaking, fewer studies have been carried out on the nodal root system because of its disappearance at the early seedling stage under indoor environments. In this study, 196 accessions from the Huanghuai Wheat Region (HWR) were used to identify the characteristics of seminal and nodal root traits under different growth environments, including indoor hydroponic culture (IHC), outdoor hydroponic culture (OHC), and outdoor pot culture (OPC), for three growing seasons. The results indicated that the variation range of root traits in pot environment was larger than that in hydroponic environment, and canonical coefficients were the greatest between OHC and OPC (0.86) than those in other two groups, namely, IHC vs. OPC (0.48) and IHC vs. OHC (0.46). Most root traits were negatively correlated with spikes per area (SPA), grains per spike (GPS), and grain yield (GY), while all the seminal root traits were positively correlated with thousand-kernel weight (TKW). Genome-wide association study (GWAS) was carried out on root traits by using a wheat 660K SNP array. A total of 35 quantitative trait loci (QTLs)/chromosomal segments associated with root traits were identified under OPC and OHC. In detail, 11 and 24 QTLs were significantly associated with seminal root and nodal root traits, respectively. Moreover, 13 QTLs for number of nodal roots per plant (NRP) containing 14 stable SNPs, were distributed on chromosomes 1B, 2B, 3A, 4B, 5D, 6D, 7A, 7B, and Un. Based on LD and bioinformatics analysis, these QTLs may contain 17 genes closely related to NRP. Among them, TraesCS2B02G552500 and TraesCS7A02G428300 were highly expressed in root tissues. Moreover, the frequencies of favorable alleles of these 14 SNPs were confirmed to be less than 70% in the natural population, suggesting that the utilization of these superior genes in wheat root is still improving.

16.
Ying Yong Sheng Tai Xue Bao ; 31(1): 148-156, 2020 Jan.
Artigo em Zh | MEDLINE | ID: mdl-31957391

RESUMO

Field experiment was conducted to examine the effects of combined application of N and Zn fertilizers on translocation, distribution, and accumulation of Zn in different organs in wheat plants. The results showed that Zn concentration and Zn accumulation in each organ were significantly different under different treatments. Compared with N3 (120 kg·hm-2), the grain Zn concentration of N1 (240 kg·hm-2) and N2 (180 kg·hm-2) increased 22.0% and 8.9%, respectively. Compared with the non-Zn application treatment (CK), grain Zn concentration under ZnS (soil Zn fertilization), ZnF (foliar Zn fertilization), and ZnS+ZnF (soil Zn fertilization combined with foliar Zn fertilization) treatments were increased by 5.4%, 60.5% and 72.8%, while Zn accumulation in grain were increased by 21.3% 82.5% and 102.4%, respectively. Zn in grain mainly came from the remobilization of Zn uptaken after antheis, with the accumulative contribution being 89.9% and 100.0% in ZnF and ZnS+ZnF, respectively. Compared with ZnS, Zn fertilizer recovery and use efficiency of ZnF and ZnS+ZnF were increased by 4.8, 1.1 times and 7.9, 2.2 times, respectively. Under current condition, Zn concentration and Zn accumulation in different organs of wheat increased with increasing N rate when it was less than 240 kg·hm-2, which was significantly increased in the grain by foliar Zn application. Therefore, Zn concentration and Zn accumulation in wheat grain could be increased by maintaining the high-yield N fertilization and combining the foliar Zn application in the late growth stage, which would improve Zn nutritional quality of wheat grain.


Assuntos
Triticum , Zinco , Grão Comestível , Fertilizantes , Nitrogênio , Solo
17.
Front Psychol ; 10: 2496, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824366

RESUMO

The classic theory of face perception holds that the invariant (e.g., identity and race) and variant (e.g., expression) dimensions of face information are independent of one another. Two separate neural systems are involved in face processing. However, the dynamic theory of face perception indicates that these two neural systems interact bidirectionally. Accordingly, by using the emotion categorization task and morph movies task, we investigated the influence of facial attractiveness on facial expression recognition and provided further evidence supporting the dynamic theory of face perception in both the static and dynamic contexts. In addition, this research used familiar celebrities (including actors, television personalities, politicians, and comedians) and explored the role of familiarity in face perception. In two experiments, the participants were asked to assess the expressions of faces with different levels of attractiveness and different levels of familiarity. We found that regardless of being in a static or dynamic face situation, happy expressions on attractive faces can be recognized more quickly, highlighting the advantage of happy expression recognition. Moreover, in static and dynamic familiar face situations, familiarity has a greater impact on expression recognition, and the influence of attraction on expression recognition may be weakened or even unaffected. Our results show that facial attractiveness influences the recognition of facial expressions in both static and dynamic contexts and highlight the importance of familiarity in face perception.

18.
Food Chem ; 261: 30-35, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29739597

RESUMO

Powdery mildew of wheat is one of the major foliar diseases, causing significant yield loss and flour quality change. In this study, grain protein and starch response to powdery mildew infection were investigated. Total protein, glutenin and gliadin exhibited a greater increase in grains from infected wheat, while the content of total starch and amylopectin was decreased. Comparative proteomic analysis demonstrated that the overabundant protein synthesis-related proteins might facilitate the accumulation of storage proteins in grains from infected plants. The significant increase in triticin, serpin and HMW-GS in grains from infected wheat might relate to the superior gluten quality. In addition, overabundant carbohydrate metabolism-related proteins in grains from infected wheat were conducive to the depletion of starch, whereas the decreased abundance of ADP glucose pyrophosphorylase might be related to the deficiency of starch synthesis. These results provide a deeper understanding on the change of wheat quality under powdery mildew infection.


Assuntos
Doenças das Plantas/microbiologia , Proteômica/métodos , Triticum/metabolismo , Triticum/microbiologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/metabolismo
19.
J Plant Physiol ; 215: 140-153, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28646681

RESUMO

Blumeria graminis f.sp. tritici (Bgt) infection greatly interferes with the normal source-sink relationships and always causes tremendous loss of yield and quality in wheat. To better understand the impact of this pathogen on grain development, proteome characterization during grain development in susceptible wheat cultivar Xinong 979 infected by powdery mildew was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 111 differentially expressed protein spots representing 85 unique proteins and six expression patterns showed a chronological description of wheat grain formation. Comparative proteome profiles indicated that 43 protein spots displayed significant abundance change, which is mainly involved in stress/defense responses, primary metabolism, and storage protein. The down-regulation of defense response-related proteins including alpha-purothionin, lactoylglutathione lyase, and alpha-amylase inhibitor CM16 in infected grains compared to control during seed filling might be related to the susceptibility of wheat to Bgt, while the enhanced expression of beta-amylase and glyceraldehyde-3-phosphate dehydrogenase and the down-regulation of ADP glucose pyrophosphorylase in infected grains probably resulted in the negative effects on yield formation. Our data reveal the complex grain metabolism mechanisms and defense responses during compatible interactions of wheat and Bgt, and provide valuable information for further understanding of the underlying molecular processes which can possibly yield novel strategies for breeding resistant cultivars and protection strategies in the field.


Assuntos
Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Proteômica/métodos , Triticum/metabolismo , Triticum/microbiologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Glucose-1-Fosfato Adenililtransferase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Lactoilglutationa Liase/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , alfa-Amilases/metabolismo
20.
Plant Physiol Biochem ; 111: 234-243, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27951493

RESUMO

Proteome characteristics of wheat leaves with the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) infection were investigated by two-dimensional electrophoresis and tandem MALDI-TOF/TOF-MS. We identified 46 unique proteins which were differentially expressed at 24, 48, and 72 h post-inoculation. The functional classification of these proteins showed that most of them were involved in photosynthesis, carbohydrate and nitrogen metabolism, defense responses, and signal transduction. Upregulated proteins included primary metabolism pathways and defense responses, while proteins related to photosynthesis and signal transduction were mostly downregulated. As expected, more antioxidative proteins were activated at the later infection stage than the earlier stage, suggesting that the antioxidative system of host plays a role in maintaining the compatible interaction between wheat and powdery mildew. A high accumulation of 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase in infected leaves indicated the regulation of the TCA cycle and pentose phosphate pathway in parallel to the activation of host defenses. The downregulation of MAPK5 could be facilitated for the compatible interaction of wheat plants and Bgt. qRT-PCR analysis supported the data of protein expression profiles. Our results reveal the relevance of primary plant metabolism and defense responses during compatible interaction, and provide new insights into the biology of susceptible wheat in response to Bgt infection.


Assuntos
Ascomicetos/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Proteômica/métodos , Triticum/metabolismo , Triticum/microbiologia , Contagem de Colônia Microbiana , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA