Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-28394701

RESUMO

This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH3-N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH3-N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.


Assuntos
Genes Bacterianos , Ciclo do Nitrogênio/genética , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Áreas Alagadas , Bactérias/genética , Bactérias/metabolismo , Desnitrificação/genética , Consórcios Microbianos/genética , Nitrificação/genética , Nitrogênio/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia
2.
Environ Sci Technol ; 48(22): 13120-9, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25338275

RESUMO

Livestock operations are known to harbor elevated levels of antibiotic resistance genes (ARGs) that may pose a threat to public health. Broiler feedlots may represent an important source of ARGs in the environment. However, the prevalence and dissemination mechanisms of various types of ARGs in the environment of broiler feedlots have not previously been identified. We examined the occurrence, abundance and variation of ARGs conferring resistance to chloramphenicols, sulfonamides and tetracyclines in the environments of two representative types of broiler feedlots (free range and indoor) by quantitative PCR, and assessed their dissemination mechanisms. The results showed the prevalence of various types of ARGs in the environmental samples of the broiler feedlots including manure/litter, soil, sediment, and water samples, with the first report of five chloramphenicol resistance genes (cmlA, floR, fexA, cfr, and fexB) in broiler feedlots. Overall, chloramphenicol resistance genes and sulfonamides sul genes were more abundant than tetracyclines tet genes. The ARG abundances in the samples from indoor boiler feedlots were generally different to the free range feedlots, suggesting the importance of feeding operations in ARG dissemination. Pearson correlation analysis showed significant correlations between ARGs and mobile genetic element genes (int1 and int2), and between the different classes of ARGs themselves, revealing the roles of horizontal gene transfer and coselection for ARG dissemination in the environment. Further regression analysis revealed that fexA, sul1 and tetW could be reliable indicator genes to surrogate anthropogenic sources of ARGs in boiler feedlots (correlations of fexA, sul1 and tetW to all ARGs: R = 0.95, 0.96 and 0.86, p < 0.01). Meanwhile, significant correlations were also identified between indicator ARGs and their corresponding antibiotics. In addition, some ARGs were significantly correlated with typical metals (e.g., Cu, Zn, and As with fexA, fexB, cfr, sul1, tetW, tetO, tetS: R = 0.52-0.71) and some environmental parameters (e.g., TOC, TN, TP, NH3-N with fexA, fexB, cfr, sul1, tetW, tetO, tetQ, tetS: R = 0.53-0.87) (p < 0.01). Further redundancy analysis demonstrated that the distribution and transportation of ARGs from the boiler feedlots to the receiving environments were correlated with environmental variables. The findings highlight the contribution of some chemicals such as antibiotics and metals to the development of ARGs in broiler feedlots environments; and the observed ARG dissemination mechanism in the broiler feedlots facilitates the development of effective mitigation measures.


Assuntos
Ração Animal , Galinhas/genética , Resistência Microbiana a Medicamentos/genética , Meio Ambiente , Animais , Antibacterianos/análise , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Genes Bacterianos/efeitos dos fármacos , Esterco/análise , Solo/química , Resíduos Sólidos/análise
3.
Water Res ; 250: 121030, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113599

RESUMO

Rivers are important in spreading antimicrobial resistance (AMR). Assessing AMR risk in large rivers is challenged by large spatial scale and numerous contamination sources. Integrating river resistome data into a global framework may help addressing this difficulty. Here, we conducted an omics-based assessment of AMR in a large river (i.e. the Pearl River in China) with global microbiome data. Results showed that antibiotic resistome in river water and sediment was more diversified than that in other rivers, with contamination levels in some river reaches higher than global baselines. Discharge of WWTP effluent and landfill waste drove AMR prevalence in the river, and the resistome level was highly associated with human and animal sources. Detection of 54 risk rank I ARGs and emerging mobilizable mcr and tet(X) highlighted AMR risk in the river reaches with high human population density and livestock pollution. Florfenicol-resistant floR therein deserved priority concerns due to its high detection frequency, dissimilar phylogenetic distance, mobilizable potential, and presence in multiple pathogens. Co-sharing of ARGs across taxonomic ranks implied their transfer potentials in the community. By comparing with global genomic data, we found that Burkholderiaceae, Enterobacteriaceae, Moraxellaceae and Pseudomonadaceae were important potential ARG-carrying bacteria in the river, and WHO priority carbapenem-resistant Enterobacteriaceae, A. baumannii and P. aeruginosa should be included in future surveillance. Collectively, the findings from this study provide an omics-benchmarked assessment strategy for public risk associated with AMR in large rivers.


Assuntos
Genes Bacterianos , Microbiota , Animais , Humanos , Rios/microbiologia , Filogenia , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Pseudomonas aeruginosa
4.
J Hazard Mater ; 465: 133082, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38016315

RESUMO

Antibiotic resistance genes (ARGs) are prevalent in the livestock environment, but little is known about impacts of animal farming on the gut antibiotic resistome of local people. Here we conducted metagenomic sequencing to investigate gut microbiome and resistome of residents in a swine farming village as well as environmental relevance by comparing with a nearby non-farming village. Results showed a shift of gut microbiome towards unhealthy status in the residents of swine farming village, with an increased abundance and diversity in pathogens and ARGs. The resistome composition in human guts was more similar with that in swine feces and air than that in soil and water. Mobile gene elements were closely associated with the prevalence of gut resistome. Some plasmid-borne ARGs were colocalized in similar genetic contexts in gut and environmental samples. Metagenomic binning obtained 47 ARGs-carrying families in human guts, and therein Enterobacteriaceae posed the highest threats in antibiotic resistance and virulence. Several ARGs-carrying families were shared by gut and environmental samples (mainly in swine feces and air), and the ARGs were evolutionarily conservative within genera. The findings highlight that swine farming can shape gut resistome of local people with close linkage to farm environmental exposures.


Assuntos
Antibacterianos , Genes Bacterianos , Suínos , Humanos , Animais , Fazendas , Agricultura , Gado
5.
Huan Jing Ke Xue ; 45(2): 1004-1014, 2024 Feb 08.
Artigo em Zh | MEDLINE | ID: mdl-38471938

RESUMO

To understand the contamination characteristics and ecological risk of antibiotics in contaminated fields of pharmaceutical plants, samples of the surface soil, soil column, wastewater treatment process water, ground water, and residue dregs were collected from two typical antibiotic pharmaceutical plants in South and North China. A total of 87 commonly used antibiotics were quantified using ultrasound extraction-solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry. The results showed that a total of 31 antibiotics of five classes were detected in all types of samples, and the maximum concentrations at each sampling point in the surface soil, soil column, residue dregs, wastewater treatment process water, and groundwater were 420 ng·g-1, 595 ng·g-1, 139 ng·g-1, 1 151 ng·L-1, and 6.65 ng·L-1, respectively. Most of the antibiotics were found in the surface soil, showing a decreasing trend with the depth of the soil column. The ecological risk assessment indicated that sulfamethazine, sulfaquinoxaline, tetracycline, chlorotetracycline, and D-sorbitol were at higher risk. Improving the efficiency of antibiotic removal from pharmaceutical wastewater and preventing production shop leaks are effective measures of controlling antibiotic contamination into and around fields in pharmaceutical plants.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Poluentes Químicos da Água/análise , Águas Residuárias , Água/análise , China , Solo , Preparações Farmacêuticas
6.
Sci Total Environ ; 927: 171991, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547976

RESUMO

Landfill leachate is a hotspot in antibiotic resistance development. However, little is known about antibiotic resistome and host pathogens in leachate and their effects on surrounding groundwater. Here, metagenomic sequencing was used to explore profiles, host bacteria, environmental risks and influencing factors of antibiotic resistome in raw and treated leachate and surrounding groundwater of three landfills. Results showed detection of a total of 324 antibiotic resistance genes (ARGs). The ARGs conferring resistance to multidrug (8.8 %-25.7 %), aminoglycoside (13.1 %-39.2 %), sulfonamide (10.0 %-20.9 %), tetracycline (5.7 %-34.4 %) and macrolide-lincosamide-streptogramin (MLS, 5.3 %-29.5 %) were dominant in raw leachate, while multidrug resistance genes were the major ARGs in treated leachate (64.1 %-83.0 %) and groundwater (28.7 %-76.6 %). Source tracking analysis suggests non-negligible influence of leachate on the ARGs in groundwater. The pathogens including Acinetobacter pittii, Pseudomonas stutzeri and P. alcaligenes were the major ARG-carrying hosts. Variance partitioning analysis indicates that the microbial community, abiotic variables and their interaction contributed most to the antibiotic resistance development. Our results shed light on the dissemination and driving mechanisms of ARGs from leachate to the groundwater, indicating that a comprehensive risk assessment and efficient treatment approaches are needed to deal with ARGs in landfill leachate and nearby groundwater. ENVIRONMENTAL IMPLICATIONS: Antibiotic resistance genes are found abundant in the landfill sites, and these genes could be disseminated into groundwater via leaching of wastewater and infiltration of leachate. This results in deterioration of groundwater quality and human health risks posed by these ARGs and related pathogens. Thus measures should be taken to minimize potential negative impacts of landfills on the surrounding environment.


Assuntos
Água Subterrânea , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água , Água Subterrânea/microbiologia , Água Subterrânea/química , Poluentes Químicos da Água/análise , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Monitoramento Ambiental , Bactérias/efeitos dos fármacos , Bactérias/genética
7.
Environ Int ; 186: 108639, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603815

RESUMO

Antimicrobial resistance is considered to be one of the biggest public health problems, and airborne transmission is an important but under-appreciated pathway for the spread of antibiotic resistance genes (ARGs) in the environment. Previous research has shown pharmaceutical factories to be a major source of ARGs and antibiotic resistant bacteria (ARB) in the surrounding receiving water and soil environments. Pharmaceutical factories are hotspots of antibiotic resistance, but the atmospheric transmission and its environmental risk remain more concerns. Here, we conducted a metagenomic investigation into the airborne microbiome and resistome in three pharmaceutical factories in China. Soil (average: 38.45%) and wastewater (average: 28.53%) were major contributors of airborne resistome. ARGs (vanR/vanS, blaOXA, and CfxA) conferring resistance to critically important clinically used antibiotics were identified in the air samples. The wastewater treatment area had significantly higher relative abundances of ARGs (average: 0.64 copies/16S rRNA). Approximately 28.2% of the detected airborne ARGs were found to be associated with plasmids, and this increased to about 50% in the wastewater treatment area. We have compiled a list of high-risk airborne ARGs found in pharmaceutical factories. Moreover, A total of 1,043 viral operational taxonomic units were identified and linked to 47 family-group taxa. Different CRISPR-Cas immune systems have been identified in bacterial hosts in response to phage infection. Similarly, higher phage abundance (average: 2451.70 PPM) was found in the air of the wastewater treatment area. Our data provide insights into the antibiotic resistance gene profiles and microbiome (bacterial and non-bacterial) in pharmaceutical factories and reveal the potential role of horizontal transfer in the spread of airborne ARGs, with implications for human and animal health.


Assuntos
Microbiologia do Ar , Antibacterianos , Microbiota , Águas Residuárias , Microbiota/genética , Microbiota/efeitos dos fármacos , China , Antibacterianos/farmacologia , Águas Residuárias/microbiologia , Bactérias/genética , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética
8.
Antimicrob Agents Chemother ; 57(6): 2824-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23478963

RESUMO

pHN1122-1 carrying bla(CTX-M-55), from an Escherichia coli isolate from a dog, was completely sequenced. pHN1122-1 has an IncI2 replicon and typical IncI2-associated genetic modules, including mok/hok-finO-yafA/B, nikABC, and two transfer regions, tra and pil, as well as a shufflon. bla(CTX-M-55) is found within a 3.084-kb ISEcp1 transposition unit that includes a fragment of IncA/C plasmid backbone. pHN1122-1 and closely related plasmids were identified in other E. coli isolates from animals in China.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Animais de Estimação/microbiologia , Plasmídeos/genética , Aves Domésticas/microbiologia , Replicon/genética , beta-Lactamases/genética , Animais , Gatos , China , Conjugação Genética , Cães , Infecções por Escherichia coli/microbiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
9.
J Antimicrob Chemother ; 68(1): 46-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22984205

RESUMO

OBJECTIVES: To characterize a representative self-transmissible multidrug resistance plasmid pHN7A8 isolated from an Escherichia coli from a dog in China, classified as F33:A-:B- by replicon sequence typing and carrying the bla(TEM-1b), bla(CTX-M-65), fosA3 and rmtB genes conferring resistance to penicillins, cephalosporins, fosfomycin and aminoglycosides, respectively. METHODS: pHN7A8 was sequenced using a whole-genome shotgun approach and the sequence analysed by comparison with reference plasmids. RESULTS: pHN7A8 is a circular molecule of 76 878 bp. bla(CTX-M-65), fosA3 and rmtB are found in known contexts, interspersed with different mobile elements including ISEcp1, IS1, Tn2, IS1294, IS903 and four copies of IS26. This multiresistance region has only a single nucleotide difference from that of pXZ, an F2:A-:B- plasmid isolated from poultry in China. The pHN7A8 backbone carries genes encoding addiction and partitioning systems that promote plasmid maintenance and has a similar organization to pXZ, as well as IncFII plasmids such as R100, pC15-1a/pEK516 and pHK23, isolated in Japan, Canada/the UK and China, respectively, but with varying levels of identity, suggesting recombination. CONCLUSIONS: pHN7A8 is a chimera that may have resulted from the acquisition, by recombination in the plasmid backbone, of the multiresistance region found in pXZ. This region appears to have evolved from the resistance determinant R100 through the stepwise integration of multiple antimicrobial resistance determinants from different sources by the actions of mobile elements and recombination. The successful dissemination of this multidrug resistance plasmid presents further challenges for the prevention and treatment of Enterobacteriaceae infections.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fator F/genética , Fosfomicina , Metiltransferases/genética , beta-Lactamases/genética , Animais , Sequência de Bases , China/epidemiologia , Cães , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Fator F/isolamento & purificação , Fosfomicina/farmacologia , Metiltransferases/isolamento & purificação , Dados de Sequência Molecular , beta-Lactamases/isolamento & purificação
10.
Environ Sci Technol ; 47(18): 10266-76, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23952780

RESUMO

Natural and synthetic progestagens in the environment have become a concern due to their adverse effects on aquatic organisms. Laboratory studies were performed to investigate aerobic biodegradation of norgestrel by bacteria from activated sludge in comparison with progesterone, and to identify their degradation products and biotransformation pathways. The degradation of norgestrel followed first order reaction kinetics (T1/2 = 12.5 d), while progesterone followed zero order reaction kinetics (T1/2 = 4.3 h). Four and eight degradation products were identified for norgestrel and progesterone, respectively. Six norgestrel-degrading bacterial strains (Enterobacter ludwigii, Aeromonas hydrophila subsp. dhakensis, Pseudomonas monteilii, Comamonas testosteroni, Exiguobacterium acetylicum, and Chryseobacterium indologenes) and one progesterone-degrading bacterial strain (Comamonas testosteroni) were successfully isolated from the enrichment culture inoculated with aerobic activated sludge. To our best knowledge, this is the first report on the biodegradation products and degrading bacteria for norgestrel under aerobic conditions.


Assuntos
Bactérias/metabolismo , Anticoncepcionais Orais Sintéticos/metabolismo , Norgestrel/metabolismo , Progesterona/metabolismo , Progestinas/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/isolamento & purificação , Biodegradação Ambiental , Biotransformação , Esgotos/microbiologia
11.
Environ Int ; 171: 107715, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577297

RESUMO

Tire wear particles (TWPs) enter road surface with the friction between tires and road surfaces. Under the volatilization, leaching, and transformation action on TWPs by sunlight and rain, tire additives are released into urban water systems, such as surface rainfall runoff, wastewater treatment plants (WWTPs), receiving surface waters, and drinking water treatment plant (DWTP). In this study, we investigated the occurrence of 23 tire additives and their transformation products in the urban water system of the Pearl River Delta region, South China. Nineteen target compounds were detected in the surface runoff, with 1,3-Diphenylguanidine (DPG) showing highest maximum concentration of 58780 ng/L. Benzothiazole and its transformation products are detected at the frequency of 100 % with the total concentrations of 480-42160 ng/L. The antioxidant derivative N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) was also detected up to 1562 ng/L, which was considerably higher than that of the parent compound 6PPD (the maximum concentration of 7.52 ng/L). Eleven and 8 compounds were detected in WWTPs influents and effluents, respectively, with removal rates of - 62-100 %. Seventeen compounds were detected in the receiving Zhujiang and Dongjiang rivers, while 9 compounds were detected in drinking water sources and DWTP samples. Road runoff, with total concentrations of target compounds up to 79200 ng/L, is suggested as the main non-point source for receiving rivers, while WWTPs effluents are the point sources due to incomplete removal of target compounds after accepting the initial runoff. 6PPD-Q and other 10 compounds displayed median to high ecological risks in surface waters, and the human daily intake of tire additives was estimated to be 2.63 × 10-8-3.16 × 10-5 mg/(kg d) via drinking water. This is the first report of the 6PPD-Q and 1,3-Diphenylurea levels in surface waters in China.


Assuntos
Benzoquinonas , Carbanilidas , Água Potável , Fenilenodiaminas , Rios , Poluentes Químicos da Água , Humanos , China , Água Potável/análise , Água Potável/química , Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Guanidinas/análise , Borracha/química , Fenilenodiaminas/análise , Benzoquinonas/análise , Carbanilidas/análise
12.
Environ Int ; 172: 107751, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36680804

RESUMO

Globally extensive use of antibiotics has accelerated antimicrobial resistance (AMR) in the environment. As one of the biggest antibiotic consumers, livestock farms are hotspots in AMR prevalence, especially those in the atmosphere can transmit over long distances and pose inhalation risks to the public. Here, we collected total suspended particulates in swine farms and ambient air of an intensive swine farming area. Bacterial communities and antibiotic resistomes were analyzed using amplicon and metagenomic sequencing approaches. AMR risks and inhalation exposure to potential human-pathogenic antibiotic-resistant bacteria (HPARB) were subsequently estimated with comparison to the reported hospital samples. The results show that swine farms shaped the airborne bacterial community by increasing abundances, reducing diversities and shifting compositions. Swine feces contributed 77% of bacteria to swine farm air, and about 35% to ambient air. Airborne antibiotic resistomes in swine farms mainly conferred resistance to tetracyclines, aminoglycosides and lincosamides, and over 48% were originated from swine feces. Distinct to the hospital air, Firmicutes were dominant bacteria in swine farming environments with conditional pathogens including Clostridium, Streptococcus and Aerococcus being major hosts of antibiotic resistance genes (ARGs). Therein, genomes of S. alactolyticus carrying (transposase/recombinase-associated) ARGs and virulence factor genes were retrieved from the metagenomes of all swine feces and swine farm air samples, but they were not detected in any hospital air samples. This suggests the indication of S. alactolyticus in swine farming environments with potential hazards to human health. Swine farm air faced higher AMR risks than hospital air and swine feces. The inhalation intake of HPARB by a swine farm worker was about three orders of magnitude higher than a person who works in the hospital. Consequently, this study depicted atmospheric transmission of bacteria and antibiotic resistomes from swine feces to the environment.


Assuntos
Antibacterianos , Gado , Suínos , Humanos , Animais , Antibacterianos/farmacologia , Fazendas , Gado/genética , Genes Bacterianos , Metagenoma , Bactérias/genética , Agricultura , Farmacorresistência Bacteriana/genética
13.
Environ Int ; 181: 108304, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37931561

RESUMO

Swine farms contaminated the surrounding environment through manure application and biogas slurry irrigation, hence causing the wide residual of multiple antimicrobial drugs (ADs) and their transformation products (TPs). This study performed target, suspect, and nontarget screening methods to comprehensively investigate the pollution profiles of ADs in a typical swine farm, and characterize the potential transformed pathway of TPs and distinguish specific reactions of different catalog of ADs. Samples of fresh feces, compost, biogas slurry, topsoil, column soil, groundwater and plants were analyzed using the database containing 98 target analytes, 679 suspected parent ADs, and âˆ¼ 107 TPs. In total, 29 ADs were quantitively detected, and tetracyclines (TCs) were mostly frequently detected ADs with the concentrations up to 4251 ng/g in topsoil. Soil column investigation revealed that doxycycline (DOX) and tetracycline (TC) in soil could migrate to depths of approximately 1 m in soil. Suspect screening identified 75 parent ADs, with 10 being reported for the first time in environmental media. Semi-quantification of ADs revealed that one of the less-concerned ADs, clinafloxacin, was detected to exceed 5000 ng/L in biogas slurry, suggesting that significant attentions should be paid to these less-concerned ADs. Moreover, 314 TPs was identified, and most of them were found to undergo microbial/enzymatic metabolism pathways. Overall, our study displays a comprehensive overview of ADs and their TPs in swine farming environments, and provides an inventory of crucial list that worthy of concern. The results emphasize the need to quantify the levels and distribution of previously overlooked ADs and their TPs in livestock farms.


Assuntos
Anti-Infecciosos , Biocombustíveis , Animais , Suínos , Fazendas , Antibacterianos , Esterco , Solo
14.
Environ Int ; 172: 107784, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36731187

RESUMO

Antimicrobial resistance is recognized as one of the greatest public health concerns. It is becoming an increasingly threat during the COVID-19 pandemic due to increasing usage of antimicrobials, such as antibiotics and disinfectants, in healthcare facilities or public spaces. To explore the characteristics of airborne antibiotic resistome in public transport systems, we assessed distribution and health risks of airborne antibiotic resistome and microbiome in railway stations before and after the pandemic outbreak by culture-independent and culture-dependent metagenomic analysis. Results showed that the diversity of airborne antibiotic resistance genes (ARGs) decreased following the pandemic, while the relative abundance of core ARGs increased. A total of 159 horizontally acquired ARGs, predominantly confering resistance to macrolides and aminoglycosides, were identified in the airborne bacteria and dust samples. Meanwhile, the abundance of horizontally acquired ARGs hosted by pathogens increased during the pandemic. A bloom of clinically important antibiotic (tigecycline and meropenem) resistant bacteria was found following the pandemic outbreak. 251 high-quality metagenome-assembled genomes (MAGs) were recovered from 27 metagenomes, and 86 genera and 125 species were classified. Relative abundance of ARG-carrying MAGs, taxonomically assigned to genus of Bacillus, Pseudomonas, Acinetobacter, and Staphylococcus, was found increased during the pandemic. Bayesian source tracking estimated that human skin and anthropogenic activities were presumptive resistome sources for the public transit air. Moreover, risk assessment based on resistome and microbiome data revealed elevated airborne health risks during the pandemic.


Assuntos
COVID-19 , Microbiota , Humanos , Genes Bacterianos , Pandemias , Antibacterianos/farmacologia , Teorema de Bayes , Bactérias/genética
15.
ISME Commun ; 3(1): 34, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081217

RESUMO

Acinetobacter is present in the livestock environment, but little is known about their antibiotic resistance and pathogenic species in the farm groundwater. Here we investigated antibiotic resistance of Acinetobacter in the swine farm groundwater (JZPG) and residential groundwater (JZG) of a swine farming village, in comparison to a nearby (3.5 km) non-farming village (WTG) using metagenomic and culture-based approaches. Results showed that the abundance of antibiotic resistome in some JZG and all JZPG (~3.4 copies/16S rRNA gene) was higher than that in WTG (~0.7 copies/16S rRNA gene), indicating the influence of farming activities on both groundwater types. Acinetobacter accounted for ~95.7% of the bacteria in JZG and JZPG, but only ~8.0% in WTG. They were potential hosts of ~95.6% of the resistome in farm affected groundwater, which includes 99 ARG subtypes against 23 antibiotic classes. These ARGs were associated with diverse intrinsic and acquired resistance mechanisms, and the predominant ARGs were tetracyclines and fluoroquinolones resistance genes. Metagenomic binning analysis elucidated that non-baumannii Acinetobacter including A. oleivorans, A. beijerinckii, A. seifertii, A. bereziniae and A. modestus might pose environmental risks because of multidrug resistance, pathogenicity and massive existence in the groundwater. Antibiotic susceptibility tests showed that the isolated strains were resistant to multiple antibiotics including sulfamethoxazole (resistance ratio: 96.2%), levofloxacin (42.5%), gatifloxacin (39.0%), ciprofloxacin (32.6%), tetracycline (32.0%), doxycycline (29.0%) and ampicillin (12.0%) as well as last-resort polymyxin B (31.7%), colistin (24.1%) and tigecycline (4.1%). The findings highlight potential prevalence of groundwater-borne antibiotic-resistant pathogenic Acinetobacter in the livestock environment.

16.
J Hazard Mater ; 452: 131208, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966625

RESUMO

Antibiotics are increasingly used and released into the marine environment due to the rapid development of mariculture, resulting in spread of antibiotic resistance. The pollution, distribution, and characteristics of antibiotics, antibiotic resistance genes (ARGs) and microbiomes have been investigated in this study. Results showed that 20 antibiotics were detected in Chinese coastal environment, with predominance of erythromycin-H2O, enrofloxacin and oxytetracycline. In coastal mariculture sites, antibiotic concentrations were significantly higher than in control sites, and more types of antibiotics were detected in the South than in the North of China. Residues of enrofloxacin, ciprofloxacin and sulfadiazine posed high resistance selection risks. ß-Lactam, multi-drug and tetracycline resistance genes were frequently detected with significantly higher abundance in the mariculture sites. Of the 262 detected ARGs, 10, 26, and 19 were ranked as high-risk, current-risk, future-risk, respectively. The main bacterial phyla were Proteobacteria and Bacteroidetes, of which 25 genera were zoonotic pathogens, with Arcobacter and Vibrio in particular ranking in the top10. Opportunistic pathogens were more widely distributed in the northern mariculture sites. Phyla of Proteobacteria and Bacteroidetes were the potential hosts of high-risk ARGs, while the conditional pathogens were associated with future-risk ARGs, indicating a potential threat to human health.


Assuntos
Antibacterianos , Microbiota , Humanos , Antibacterianos/farmacologia , Genes Bacterianos , Enrofloxacina , Bactérias/genética , Bacteroidetes , Proteobactérias/genética
17.
Antimicrob Agents Chemother ; 56(4): 2135-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22232290

RESUMO

The presence and characterization of plasmid-mediated fosfomycin resistance determinants among Escherichia coli isolates collected from pets in China between 2006 and 2010 were investigated. Twenty-nine isolates (9.0%) were positive for fosA3, and all of them were CTX-M producers. The fosA3 genes were flanked by IS26 and were localized on F2:A-:B- plasmids or on very similar F33:A-:B- plasmids carrying both bla(CTX-M-65) and rmtB. These findings indicate that the fosA3 gene may be coselected by antimicrobials other than fosfomycin.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fosfomicina/farmacologia , Metiltransferases/genética , Animais de Estimação/microbiologia , Plasmídeos/genética , beta-Lactamases/genética , Animais , Gatos , China , Conjugação Genética , Cães , Fezes/microbiologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
19.
Environ Int ; 158: 106927, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673316

RESUMO

Animal farms have been considered as the critical reservoir of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). Spread of antibiotic resistance from animal farms to the surrounding environments via aerosols has become a growing concern. Here we investigated the dispersal pattern and exposure risk of airborne ARGs (especially in zoonotic pathogens) in the environment of chicken and dairy farms. Aerosol, dust and animal feces samples were collected from the livestock houses and surrounding environments (upwind and downwind areas) for assessing ARG profiles. Antibiotic resistance phenotype and genotype of airborne Staphylococcus spp. was especially analyzed to reveal the exposure risk of airborne ARGs. Results showed that airborne ARGs were detected from upwind (50 m/100 m) and downwind (50 m/100 m/150 m) air environment, wherein at least 30% of bacterial taxa dispersed from the animal houses. Moreover, atmospheric dispersion modeling showed that airborne ARGs can disperse from the animal houses to a distance of 10 km along the wind direction. Clinically important pathogens were identified in airborne culturable bacteria. Genus of Staphylococcus, Sphingomonas and Acinetobacter were potential bacterial host of airborne ARGs. Airborne Staphylococcus spp. were isolated from the environment of chicken farm (n = 148) and dairy farm (n = 87). It is notable that all isolates from chicken-related environment were multidrug-resistance (>3 clinical-relevant antibiotics), with more than 80% of them carrying methicillin resistance gene (mecA) and associated ARGs and MGEs. Presence of numerous ARGs and diverse pathogens in dust from animal houses and the downwind residential areas indicated the accumulation of animal feces origin ARGs in bioaerosols. Employees and local residents in the chick farming environment are exposed to chicken originated ARGs and multidrug resistant Staphylococcus spp. via inhalation. This study highlights the potential exposure risks of airborne ARGs and antibiotic resistant pathogens to human health.


Assuntos
Genes Bacterianos , Staphylococcus aureus Resistente à Meticilina , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos/farmacologia , Galinhas , Resistência Microbiana a Medicamentos , Fazendas , Humanos
20.
Sci Total Environ ; 808: 152042, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34856250

RESUMO

Increasing use of feed and medicine in mariculture could cause negative environmental impacts such as habitat modification, microbial disease development and antibiotic resistance. Here we investigated contamination of antibiotics and antibiotic resistance genes (ARGs), and composition of microbial community in grouper mariculture systems in Hainan province, China. Results showed detection of various antibiotic residues with the dominance of fluoroquinolones and tetracyclines in the six grouper cultivation systems. The concentrations of the detected antibiotics in the grouper mariculture water were significantly higher than those in the original seawater. Some of the detected antibiotics such as enrofloxacin, ciprofloxacin, ofloxacin, oxytetracycline and erythromycin in the mariculture water and/or sediment would pose high resistance selection risks. Sulfonamides resistance genes sul1 and sul2 were found to be predominant in water and sediment, while tetracycline resistance genes were prevalent in fish gill and gut. The dominant bacterial phyla in water and sediments were Bacteroides, Actinomycetes, and Proteobacteria, while the dominant ones in fish gill and gut were the Proteobacteria. Genera of Vibrio and Mycobacterium in the core microbiota were important zoonotic pathogens, and there was a significant positive correlation between Vibrio and ARGs. Phyla of Proteobacteria, Actinomyces, and Cyanobacteria were positively correlated to ARGs, indicating that these microorganisms are potential hosts of ARGs. The putative functions of microbiome related to antibiotic resistance and human diseases were significantly higher in fish than in the mariculture environment. This study suggests that mariculture system is a reservoir of ARGs, and the use of antibiotics in mariculture could induce the increase of antibiotic resistance and the prevalence of opportunistic pathogens.


Assuntos
Bass , Microbiota , Animais , Antibacterianos/farmacologia , Aquicultura , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA