Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ecotoxicol Environ Saf ; 249: 114375, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508836

RESUMO

Microplastics (MPs) are widespread in the environment and can be ingested through food, water, and air, posing a threat to human health. In addition, MPs can have a potential combined effect with other toxic compounds. Polystyrene (PS) has been shown to enhance the cytotoxicity of okadaic acid (OA). However, it remains unclear whether this enhancement effect is related to the size of PS particles. In this study, we investigated the mechanism of the combined effect of PS microplastics (PS-MPs) or PS nanoplastics (PS-NPs) and OA on Caco-2 cells. The results indicated that PS-NPs enhanced the cytotoxicity of OA and induced endoplasmic reticulum (ER) stress-mediated apoptosis in Caco-2 cells, compared to PS-MPs. Specifically, PS-NPs and OA cause more severe oxidative stress, lactate dehydrogenase (LDH) release, and mitochondrial membrane depolarization. Furthermore, it induced intracellular calcium overload through store-operated channels (SOCs) and activated the PERK/ATF-4/CHOP pathway to cause ER stress. ER stress promoted mitochondrial damage and finally activated the caspase family to induce apoptosis. This study provided an indirect basis for the assessment of the combined toxicity of MPs or NPs with OA.


Assuntos
Apoptose , Microplásticos , Ácido Okadáico , Poliestirenos , Poluentes Químicos da Água , Humanos , Apoptose/efeitos dos fármacos , Células CACO-2 , Microplásticos/toxicidade , Ácido Okadáico/toxicidade , Plásticos , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Anal Chem ; 94(29): 10367-10374, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35839421

RESUMO

Liver cancer (LC) is the third frequent cause of death worldwide, so early diagnosis of liver cancer patients is crucial for disease management. Herein, we applied NH2-coated polystyrene@Fe3O4 magnetic beads (PS@Fe3O4-NH2 MBs) as a matrix material in laser desorption/ionization mass spectrometry (LDI-MS). Rapid, sensitive, and selective metabolic profiling of the native biofluids was achieved without any inconvenient enrichment or purification. Then, based on the selected m/z features, LC patients were discriminated from healthy controls (HCs) by machine learning, with the high area under the curve (AUC) values for urine and serum assessments (0.962 and 0.935). Moreover, initial-diagnosed and subsequent-visited LC patients were also differentiated, which indicates potential applications of this method in early diagnosis. Furthermore, among these identified compounds by FT-ICR MS, the expression level of some metabolites changed from HCs to LCs, including 29 and 12 characteristic metabolites in human urine and serum samples, respectively. These results suggest that PS@Fe3O4-NH2 MBs-assisted LDI-MS coupled with machine learning is feasible for LC clinical diagnosis.


Assuntos
Detecção Precoce de Câncer , Neoplasias Hepáticas , Humanos , Lasers , Neoplasias Hepáticas/diagnóstico , Fenômenos Magnéticos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
Anal Chem ; 93(39): 13326-13333, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34569226

RESUMO

Current ambient ionization sources for mass spectrometry (MS) are typically connected to gas cylinders, high-voltage supply, injection pump, and other accessory equipment, which hinder the popularization of MS in the field of on-site detection. Here, we developed a wireless pocket-size "MasSpec Pointer" (weights 65 g) based on arc discharge powered by a 3.7 V polymer Li battery for ambient ionization MS. A high voltage of 5600 V and 20 kHz was generated from the boost coil to penetrate air and form a plasma. The relative standard deviation (RSD) of the high-voltage pulses is 3.8%, leading to a stable discharge and a good quantification performance. A mini diaphragm pump was used to cool the plasma from ∼600 to ∼40 °C and to blow the plasma into a jet, which facilitates sampling. MasSpec Pointer can work well at both positive- and negative-ion modes without any modification and can quickly test gaseous, liquid, or solid samples. The limit of detection of this device for atrazine (an agrochemical) is lower than 0.1 ng/mL. MasSpec Pointer has shown its ability to pinpoint the double-bond location of fatty acid isomers without derivatization reagents or light illumination. Agrochemicals from the surface of an apple and daily chemicals from the surface of a finger were detected successfully using MasSpec Pointer coupled with a miniature mass spectrometer. We believe the "point-and-shoot" device coupled with mini-MS brings the hope for an age of detecting chemicals on-site by nonprofessionals.


Assuntos
Espectrometria de Massas
4.
Ecotoxicol Environ Saf ; 227: 112885, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34634601

RESUMO

The coexistence of nanoplastics (NPs) and pollutants such as arsenic (As) has become an unignorable environmental problem. However, there is still a considerable knowledge gap about the impact of NPs and pollutants on human health risks. In this study, the human gastric adenocarcinoma (AGS) cells were used as a model to investigate the toxicity of NPs with different particle sizes and As by MTT assay, western blotting, immunofluorescence and so on. The results showed that 20 nm (8 µg/mL), 50 nm (128 µg/mL), 200 nm (128 µg/mL), 500 nm (128 µg/mL), 1000 nm (128 µg/mL) polystyrene (PS) did not affect cell viability, ROS, intracellular calcium and activate apoptosis pathway in AGS cells. However, noncytotoxic concentration of NPs enhanced the cytotoxicity and intracellular accumulation of As. NPs destroys the fluidity of cell membrane and cytoskeleton, inhibits the activity of ABC transporter, and leads to the accumulation of As in cells. This work highlights that the damage caused by NPs, especially at the level of noncytotoxicity, joint with As cannot be ignored and provides a specific toxicological mechanism of NPs accompanied by exposure to As.


Assuntos
Arsênio , Nanopartículas , Transportadores de Cassetes de Ligação de ATP , Citoesqueleto , Humanos , Microplásticos
5.
Mikrochim Acta ; 187(12): 672, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225389

RESUMO

A fluorescence method for the determination of inorganic pyrophosphatase (PPase) activity has been established based on copper nanoclusters (CuNCs). The polythymine of 40 mer (T40) acts as a template for the reduction reaction from Cu2+ to Cu0 by ascorbic acid (AA). This reaction leads to the formation of fluorescent CuNCs with excitation/emission peaks at 340/640 nm. However, the higher binding affinity between inorganic pyrophosphate (PPi) and Cu2+ hinders the effective formation of CuNCs. This shows low fluorescence intensity. PPase catalyzes the hydrolysis of PPi into Pi during which free Cu2+ ions are produced. This facilitates the formation of fluorescent CuNCs. Thus, the fluorescence intensity was restored. The fluorescence enhancement of the system has a linear relationship with PPase activity in the range 0.3 to 20 mU·mL-1, and the detection limit is0.2 mU·mL-1. The relative intensity (I/I0) at 640 nm for the analytical solution versus system is also employed to screen the inhibitor for PPase with high efficiency. Graphical abstract Schematic representation of a fluorescent assay for the determination of inorganic pyrophosphatase activity and screening its inhibitor based on single-strand polythymine-scaffolded copper nanoclusters.


Assuntos
Cobre/química , DNA de Cadeia Simples/química , Inibidores Enzimáticos/análise , Pirofosfatase Inorgânica/metabolismo , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , Ácido Ascórbico/química , Corantes Fluorescentes/química , Pirofosfatase Inorgânica/antagonistas & inibidores , Limite de Detecção
6.
Mikrochim Acta ; 186(6): 364, 2019 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31104105

RESUMO

A selective fluorescent on-off-on probe has have designed for the detection of fluoride (F-) ions based on DNA-templated copper nanocluster (CuNCs) and by using aluminum(III) ions as a bridge. A 40-mer polythymine acts as a template for the reduction of Cu(II) to Cu(0) by ascorbic acid. This result is the formation of red fluorescent CuNCs, with excitation/emission peaks at 340/640 nm. After addition of Al3+ ions, the fluorescence of CuNCs is quenched because the interaction of Al3+ and DNA disturbs the formation of DNA-templated CuNCs. Fluorescence is restored on addition of fluoride to the system. This is due to the desorption of Al3+ from the DNA and the formation of the Al(OH)3F- complex. This system displays a fast fluorometric response to fluoride, with high selectivity over other anions. Fluorescence increases linearly in the 2 to 150 µM F- concentration range, and the detection limit is 1.0 µM. This probe has been successfully used for the detection of F- ions in four brands of toothpaste. The method is rapid, cost-effective, selective, and does not require toxic solvents and reagents. Graphical abstract Schematic presentation of a method for fluorometric determination of fluoride by using DNA-templated copper nanoclusters (CuNCs) and using aluminum(III) as a bridge. The red fluorescence of the CuNCs is quenched in the presence of Al(III) ions but restored after addition of fluoride.


Assuntos
Alumínio/química , DNA/química , Corantes Fluorescentes/química , Fluoretos/análise , Nanopartículas Metálicas/química , Sequência de Bases , Brassica/química , Pão/análise , Cobre/química , Dentifrícios/análise , Água Potável/química , Lagos/química , Limite de Detecção , Poli T/química , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise
7.
Luminescence ; 33(1): 145-152, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28856794

RESUMO

In this paper, we report a colorimetric sensor for the rapid, selective detection of ascorbic acid (AA) in aqueous solutions. Single-layered MnO2 nanosheets were established as an artificial oxidase; consequently colorless 3,3´,5,5´-tetramethylbenzidine (TMB) was oxidized to a blue product (oxTMB), with increase in absorbance at 650 nm. The absorbance of the reaction system decreased after introduction AA, which reduced MnO2 into Mn2+ . Under optimum conditions, a detection limit of 62.81 nM for AA in aqueous solutions could be achieved. The linear response range for AA was 0.25-30 µM with a correlation coefficient of 0.996. Importantly, the MnO2 nanosheet-TMB chromogenic reaction exhibited great selectivity as there was no interference from other metal ions, amino acids and small biological molecules. The proposed colorimetric sensing of AA could be applied for fruit, juice and pharmaceutical samples. Moreover, the proposed sensor showed satisfying performance, including low cost, easy preparation, rapid detection, and good biocompatibility.


Assuntos
Ácido Ascórbico/análise , Colorimetria , Contaminação de Alimentos/análise , Compostos de Manganês/química , Nanoestruturas/química , Óxidos/química , Estrutura Molecular , Soluções , Água/química
8.
Mikrochim Acta ; 185(3): 174, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29594662

RESUMO

The authors describe a colorimetric method for the determination of Hg2+ ions based on the inhibition of the activity of the enzyme urease. The pH value of solution increases when urease hydrolyzes urea, which can be visualized by adding a pH indicator such as Phenol Red (PhR). Mercaptoethanol as a typical thiol is added to the system to improve selectivity because it binds metal ions and then - unlike the Hg2+ mercaptoethanol complex - does not inhibit urease. Hence, the color of the pH indicator PhR turns from yellow to pink as the solution becomes alkaline. The Hg2+ mercaptoethanol complex, in contrast, strongly inhibits urease and the color of the solution remains yellow. The findings were used to design a photometric assay based on the measurement of the ratio of absorptions of PhR at 558 nm and 430 nm. It has a linear response over the 25 to 40 nM Hg2+ concentration range and a 5 nM detection limit. This is well below the guideline values of Hg2+ specified by the US Environmental Protection Agency and the World Health Organization for drinking water (10 nM and 30 nM, respectively). The method was employed to the determination of Hg2+ in water samples spiked with 10 nM levels of Hg2+ where color changes still can be observed visually. Graphical Abstract Schematic presentation of a colorimetric method for the ultrasensitive detection of Hg2+ based on the inhibition of urease activity. Mercaptoethanol is used to improve the selectivity. Even at Hg2+ concentrations as low as 5 nM, the color change still can be easily observed by bare eyes.


Assuntos
Colorimetria/métodos , Inibidores Enzimáticos/química , Mercaptoetanol/química , Mercúrio/análise , Urease/antagonistas & inibidores , Cátions Bivalentes , Cor , Complexos de Coordenação/química , Concentração de Íons de Hidrogênio , Indicadores e Reagentes/química , Limite de Detecção , Mercúrio/química , Fenolsulfonaftaleína/química
9.
Mikrochim Acta ; 185(6): 298, 2018 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-29754164

RESUMO

A time-resolved phosphorescence (TRP) is applied to the highly sensitive determination of Fe(II) ions. The method is based on the use of a phosphorescent probe consisting of cysteine-bridged Mn-doped ZnS quantum dots (Mn/ZnS QDs). The presence of cysteine enhances the phosphorescence of the QDs and also increases the efficiency of quenching caused by Fe(II) ions. This results in strongly improved selectivity for Fe(II). The linear response is obtained in the concentration range of 50-1000 nM with a 19 nM detection limit. Phosphorescence is recorded at excitation/emission peaks of 301/602 nm. The interference of short-lived fluorescent and scattering background from the biological fluids is eliminated by using the TRP mode with a delay time of 200 µs. The determination of Fe(II) in human serum samples spiked at a 150 nM level gave a 92.4% recovery when using the TRP mode, but only 52.4% when using steady-state phosphorescence. This demonstrates that this probe along with TRP detection enables highly sensitive and accurate determination of Fe(II) in serum. Graphical abstract Schematic of a novel phosphorescent method for the detection of Fe2+ ions based on cysteine-bridged Mn-doped ZnS quantum dots. The sensitivity of this assay greatly increases due to the addition of cysteine. Interferences by short-lived auto-fluorescence and the scattering light from the biological fluids is eliminated by using time-resolved phosphorescence mode.

10.
Analyst ; 142(17): 3177-3182, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28745762

RESUMO

A simple, visible and smartphone readable strategy has been proposed for the sensitive detection and discrimination of multiple proteins. By employing five different concentrations of NaCl salt, AuNP exhibited different aggregation behavior for different proteins because of differential ion strength, leading to diverse color changes. The sensing system could not only discriminate twelve proteins at the concentration of 50 nM in aqueous solution, but it could also discriminate these proteins at 200 nM in the presence of human urine with an accuracy of 100%. More importantly, based on the theory of chromatics, we could directly read out the color value using a smartphone to distinguish twelve proteins, pure Lys and HSA at various concentrations, and the mixture of these two proteins in the presence of human urine with no confusion after a hierarchical clustering analysis (HCA). The inexpensive and convenient colorimetric sensor array using the ubiquitous smartphone for signal readout has great potential for the point-of-care diagnosis without additional devices.


Assuntos
Colorimetria , Proteínas/análise , Smartphone , Cor , Humanos
11.
Analyst ; 142(14): 2663-2669, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28616944

RESUMO

The development of sensitive and cheap sensor arrays for identification of proteins plays an important role in many bioanalytical and clinical investigations. Here, we introduce a multidimensional colorimetric sensor array for the detection of multiple proteins based on acquiring multiple signals along with the reaction time to enhance the discrimination ability. In a single experiment, the unique fingerprint for each protein against the sensor array is generated from a response absorbance signal at three reaction time points (at 10 min, 15 min, and 20 min). Our colorimetric sensing system is able to identify ten proteins not only in aqueous solution at 10 nM but also in human urine at the 50 nM level with an accuracy of 100%. Moreover, the identification of HSA in urine at the nanomolar level within a linear range of 0.05-1.0 µM is achieved. Our sensing array system is sufficiently sensitive for the discrimination of pure HSA, binary mixtures of HSA and Lys at a total concentration of 50 nM in urine. This study indicates that the application of the real-time resolved response signals enables the enhancement of the discrimination ability for protein recognition.


Assuntos
Colorimetria , Proteínas/análise , Ouro , Humanos , Nanopartículas Metálicas , Urinálise , Água
12.
ACS Nano ; 17(5): 4463-4473, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36802559

RESUMO

Simultaneous imaging of exogenous nanomaterials and endogenous metabolites in situ remains challenging and is beneficial for a systemic understanding of the biological behavior of nanomaterials at the molecular level. Here, combined with label-free mass spectrometry imaging, visualization and quantification of the aggregation-induced emission nanoparticles (NPs) in tissue were realized as well as related endogenous spatial metabolic changes simultaneously. Our approach enables us to identify the heterogeneous deposition and clearance behavior of nanoparticles in organs. The accumulation of nanoparticles in normal tissues results in distinct endogenous metabolic changes such as oxidative stress as indicated by glutathione depletion. The low passive delivery efficiency of nanoparticles to tumor foci suggested that the enrichment of NPs in tumors did not benefit from the abundant tumor vessels. Moreover, spatial-selective metabolic changes upon NPs mediated photodynamic therapy was identified, which enables understanding of the NPs induced apoptosis in the process of cancer therapy. This strategy allows us to simultaneously detect exogenous nanomaterials and endogenous metabolites in situ, hence to decipher spatial selective metabolic changes in drug delivery and cancer therapy processes.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Sistemas de Liberação de Medicamentos , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanopartículas/química , Imagem Óptica/métodos , Linhagem Celular Tumoral
13.
Chem Commun (Camb) ; 58(67): 9433-9436, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35920118

RESUMO

Genitourinary (GU) cancers are among the most common malignant diseases in men. Rapid screening is the key to GU cancer management for early diagnosis and treatment. Urine is a highly accessible specimen type and urine metabolic fingerprints (UMFs) reflect underlying metabolite signatures of GU cancers. Herein, rapid screening of GU cancers is performed using high-throughput extraction of UMFs by mass spectrometry and efficient recognition by machine learning (ML). GU cancer patients can be distinguished with an accuracy of 90.1%. Besides, key biomarkers such as citric acid were found remarkably upregulated in cancer groups, indicating the dysregulated pathways. This approach highlights the potential role of ML in clinical application and demonstrates the expanding utility of UMFs in disease screening.


Assuntos
Detecção Precoce de Câncer , Neoplasias Urogenitais , Biomarcadores , Humanos , Aprendizado de Máquina , Masculino , Espectrometria de Massas
14.
Anal Chim Acta ; 985: 175-182, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28864188

RESUMO

We developed an easily extensible fluorescence sensor array based on amino acids-modulating QDs for the discrimination of nine metal ions. Two amino acids (Glutamine and Arginine) were assembled with two quantum dots including 3-mercaptopropionic acid capped Mn-ZnS QDs (MPA-QDs) and alpha-thioglycerol capped Mn-ZnS QDs (TG-QDs), achieving six across-reactive sensing elements. Amino acids as the modulators imparted the diversity and differential detection of metal ions, because they could bind QDs and also form complexes with metal ions through their carboxyl, amino, and hydroxyl groups. Therefore, the fluorescence response signals for metal ions could be either enhanced or decreased. This sensing system allowed the accurate classification of nine metal ions in pure water at 0.5 µM and tap water at 3.0 µM. Moreover, two metal ions with different oxidation state Fe3+ and Fe2+, as well as their binary mixtures were well distinguished. Our sensor array was capable of the quantitative analysis of metal ions, showing a linear range from 0.5 µM to 20 µM for Co2+, Ni2+, Mn2+, and Fe2+. The results demonstrated that the number of sensing elements was easily extensible by using amino acids as QDs regulators. This strategy will provide a new direction to establish the sensitive array sensing systems.


Assuntos
Aminoácidos/química , Fluorescência , Metais/análise , Pontos Quânticos , Íons/análise , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA