Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34641341

RESUMO

INTRODUCTION: A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC-SAW) was developed for rapid determination of the pharmacological volatiles of turmeric (Curcuma longa L.). METHODS: The volatile compounds in 20 turmeric samples, collected from different parts and different origins, were assessed by the fast GC-SAW. In addition, gas chromatography-mass spectrometry (GC-MS) was employed to confirm the chemical composition of the main volatiles. The digital fingerprint of turmeric was established and analysed by principal component analysis and cluster analysis. RESULTS: Curcumene (9.1%), ß-sesquiphellandrene (5.1%) and ar-turmerone (69.63%) were confirmed as the main pharmacological volatiles of turmeric. The content of ar-turmerone in lateral rhizome turmeric was significantly higher than that of top rhizome and ungrouped turmeric. The contents of curcumene and ß-sesquiphellandrene in top rhizome turmeric were higher than those in lateral and ungrouped turmeric. The 20 turmeric samples were divided into four categories, which reflected the quality characteristics of the turmeric from different parts and origins. CONCLUSION: The GC-SAW method can rapidly and accurately detect pharmacologically volatiles of turmeric, and it can be used in the quality control of turmeric.


Assuntos
Curcuma/química , Rizoma/química , Compostos Orgânicos Voláteis/análise , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas , Especificidade de Órgãos , Extratos Vegetais/análise , Extratos Vegetais/química , Análise de Componente Principal , Som , Compostos Orgânicos Voláteis/química
2.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352822

RESUMO

In order to accurately investigate the disturbance of complex distributed mass loading on surface acoustic wave (SAW) propagation characteristics, two-dimensional coupling-of-modes (2-D COM) theory and finite element method (FEM) were used to simulate the responses of SAW sensors. By using the PDE mode of FEM software, four SAW resonators with the loads in different distribution patterns were modeled. Also, we fabricated and measured a series of SAW resonators accordingly. The results showed that the 2-D COM theory combined with the finite element method was able to simulate the transverse modes of the device and the disturbance of the mass loading on the transverse mode effectively, making the simulation more accurate.

3.
Sensors (Basel) ; 18(10)2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262725

RESUMO

A Love wave-based sensing chip incorporating a supramolecular cryptophane A (CrypA) thin film was proposed for methane gas sensing in this work. The waveguide effect in the structure of SiO2/36° YX LiTaO3 will confine the acoustic wave energy in SiO2 thin-film, which contributes well to improvement of the mass loading sensitivity. The CrypA synthesized from vanillyl alcohol by a double trimerisation method was dropped onto the wave propagation path of the sensing device, and the adsorption to methane gas molecules by supramolecular interactions in CrypA modulates the acoustic wave propagation, and the corresponding frequency shifts were connected as the sensing signal. A theoretical analysis was performed to extract the coupling of modes for sensing devices simulation. Also, the temperature self-compensation of the Love wave devices was also achieved by using reverse polarity of the temperature coefficient in each media in the waveguide structure. The developed CrypA coated Love wave sensing device was connected into the differential oscillation loop, and the corresponding gas sensitive characterization was investigated. High sensitivity, fast response, and excellent temperature stability were successfully achieved.

4.
Sensors (Basel) ; 16(4)2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27104540

RESUMO

The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO2) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device.

5.
Sensors (Basel) ; 16(1)2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26751450

RESUMO

A new room temperature supra-molecular cryptophane A (CrypA)-coated surface acoustic wave (SAW) sensor for sensing methane gas is presented. The sensor is composed of differential resonator-oscillators, a supra-molecular CrypA coated along the acoustic propagation path, and a frequency signal acquisition module (FSAM). A two-port SAW resonator configuration with low insertion loss, single resonation mode, and high quality factor was designed on a temperature-compensated ST-X quartz substrate, and as the feedback of the differntial oscillators. Prior to development, the coupling of modes (COM) simulation was conducted to predict the device performance. The supramolecular CrypA was synthesized from vanillyl alcohol using a double trimerisation method and deposited onto the SAW propagation path of the sensing resonators via different film deposition methods. Experiential results indicate the CrypA-coated sensor made using a dropping method exhibits higher sensor response compared to the unit prepared by the spinning approach because of the obviously larger surface roughness. Fast response and excellent repeatability were observed in gas sensing experiments, and the estimated detection limit and measured sensitivity are ~0.05% and ~204 Hz/%, respectively.

6.
Sensors (Basel) ; 15(4): 8615-23, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25875187

RESUMO

A Love wave humidity sensor is developed by using a multilayer structure consisting of PVA/SiO2 layers on an ST-90°X quartz substrate. The theoretical result shows that the sensor with such a two-layer structure can achieve a higher sensitivity and a smaller loss than the structures with a single polymer layer. Comparative experiments are performed for the sensor incorporating PVA/SiO2 layers and the sensor incorporating a PVA layer. The experimental results agree well with the theoretical predication.

7.
Sensors (Basel) ; 15(8): 17916-25, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26213930

RESUMO

Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a b-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio]]-ß-cyclodextrin was prepared by self-assembled method on one of the SAW oscillators. After templates' removal, a sensitive and selective molecular imprinting (MIP) monolayer for GB was prepared. Electrochemical impedance spectroscopy and atomic force microscope (AFM) were used to characterize this film. Comparing the detection results to GB by MIP film and non-MIP film, the molecularly imprinting effect was also proved. The resulting SAW sensor could detect sarin as low as 0.10 mg/m3 at room temperature and the frequency shift was about 300 Hz. The response frequency increased linearly with increasing sarin concentration in the range of 0.7 mg/m3~3.0 mg/m3. When sarin was detected under different temperatures, the SAW sensor exhibited outstanding sensitivity and reliability.

8.
Sensors (Basel) ; 14(3): 3908-20, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24577520

RESUMO

A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

9.
Sensors (Basel) ; 14(5): 8810-20, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24854058

RESUMO

This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio]]-ß-cyclodextrin is chosen as the sensitive material for VX detection, and a ~2 nm-thick monolayer is formed on the SAW delay line by the binding of Au-S. This material is then analyzed by atomic force microscopy (AFM). Second, the VX molecule is used as the template for molecular imprinting. The template is then removed by washing the delay line with ethanol and distilled water, thereby producing the sensitive and selective material for VX detection. The performance of the developed SAW sensor is evaluated, and results show high sensitivity, low detection limit, and good linearity within the VX concentration of 0.15-5.8 mg/m3. The possible interactions between the film and VX are further discussed.


Assuntos
Impressão Molecular , Técnicas de Sonda Molecular , Compostos Organotiofosforados/análise , Compostos Organotiofosforados/química , Enxofre , Eletrodos , Ouro , Microscopia de Força Atômica , Técnicas de Sonda Molecular/instrumentação , Enxofre/química
10.
Sensors (Basel) ; 11(11): 10894-906, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22346678

RESUMO

A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg(-1) s at angular rates of up to 1,000 deg s(-1) and good linearity are observed.

11.
Sensors (Basel) ; 11(12): 11871-84, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22247697

RESUMO

A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.


Assuntos
Gases , Adsorção , Cromatografia Gasosa , Modelos Teóricos , Compostos Orgânicos Voláteis/análise
12.
Sensors (Basel) ; 11(2): 1526-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22319366

RESUMO

A polymer-coated surface acoustic wave (SAW)-based chemical sensor for organophosphorous compound sensing at extremely low concentrations was developed, in which a dual-delay-line oscillator coated with fluoroalcoholpolysiloxane (SXFA) acted as the sensor element. Response mechanism analysis was performed on the SXFA-coated chemical sensor, resulting in the optimal design parameters. The shear modulus of the SXFA, which is the key parameter for theoretical simulation, was extracted experimentally. New designs were done on the SAW devices to decrease the insertion loss. Referring to the new phase modulation approach, superior short-term frequency stability (±2 Hz in seconds) was achieved from the SAW oscillator using the fabricated 300 MHz delay line as the feedback element. In the sensor experiment on dimethylmethylphosphonate (DMMP) detection, the fabricated SXFA-coated chemical sensor exhibited an excellent threshold detection limit up to 0.004 mg/m(3) (0.7 ppb) and good sensitivity (∼485 Hz/mg/m(3) for a DMMP concentration of 2∼14 mg/m(3)).


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Compostos Organofosforados/análise , Siloxanas/química , Som , Adsorção , Eletrodos , Microscopia Eletrônica de Varredura , Oscilometria , Reprodutibilidade dos Testes , Vapor , Propriedades de Superfície , Temperatura , Fatores de Tempo
13.
Sensors (Basel) ; 8(12): 7917-7929, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27873967

RESUMO

This paper presents an optimal design for a Love wave reflective delay line on 41o YX LiNbO3 with a polymer guiding layer for wireless sensor applications. A theoretical model was established to describe the Love wave propagation along the larger piezoelectric substrate with polymer waveguide, and the lossy mechanism from the viscoelastic waveguide was discussed, which results in the optimal guiding layer thickness. Coupling of modes (COM) was used to determine the optimal design parameters of the reflective delay line structured by single phase unidirectional transducers (SPUDTs) and shorted grating reflectors. Using the network analyzer, the fabricated Love wave reflective delay line was characterized, high signal noise ratio (S/N), sharp reflection peaks, and few spurious noise between the peaks were found, and the measured result agrees well with the simulated one. Also, the optimal guiding layer thickness of 1.5~1.8µm was extracted experimentally, and it is consistent with the theoretical analysis.

14.
Artigo em Inglês | MEDLINE | ID: mdl-26890731

RESUMO

Large time/memory costs have constituted a significant obstacle for accurately analyzing surface acoustic waves (SAWs) in large size two-dimensional (2-D) piezoelectric phononic crystals (PnCs). To overcome this obstacle, this study introduces the unit P matrix and its associated cascading. To obtain an accurate unit P matrix, the Y parameters of the SAW delay lines were derived using a three-dimensional (3-D) finite element model (FEM) with and without 2-D piezoelectric PnCs, respectively, on the transmitting path. A time window function was adopted to extract the desired signals from the P matrix analysis. Then, unit P matrix cascading was used to obtain SAW propagation parameters for the large size piezoelectric PnCs. Using this method, the SAW in aluminum (Al) /128º-YXLiNbO3 PnCs was analyzed over 150 periods. Experiments were also conducted. To choose the appropriate size of the unit P matrix, the variance between experimental results and theoretical results, and time/memory cost were compared for different periods. The results indicate that cascading by unit P matrix of 25 PnCs periods can be appropriately adopted to accurately derive the SAW propagation parameters over 150 periods. This indicates the accuracy of the unit P matrix derived by 3-D FEM and the effectiveness of P matrix analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA