RESUMO
Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.
Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Tricotecenos , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/metabolismo , Fusarium/patogenicidade , Tricotecenos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Genes Bacterianos/genéticaRESUMO
Functional multipotency renders human umbilical cord mesenchymal stem cell (hUC-MSC) a promising candidate for the treatment of spinal cord injury (SCI). However, its safety and efficacy have not been fully understood for clinical translation. In this study, we performed cellular, kinematic, physiological, and anatomical analyses, either in vitro or in vivo, to comprehensively evaluate the safety and efficacy associated with subarachnoid transplantation of hUC-MSCs in rats with subacute incomplete SCI. Concerning safety, hUC-MSCs were shown to have normal morphology, excellent viability, steady proliferation, typical biomarkers, stable karyotype in vitro, and no tumorigenicity both in vitro and in vivo. Following subarachnoid transplantation of hUC-MSCs in the subject rodents, the biodistribution of hUC-MSCs was restricted to the spinal cord, and no toxicity to immune system or organ function was observed. Body weight, organ weight, and the ratio of the latter upon the former between stem cell-transplanted rats and placebo-injected rats revealed no statistical differences. Regarding efficacy, hUC-MSCs could differentiate into osteoblasts, chondrocytes, adipocytes and neural progenitor cells in vitro. While in vivo studies revealed that subarachnoid transplantation of stem cells resulted in significant improvement in locomotion, earlier automatic micturition recovery and reduced lesion size, which correlated with increased regeneration of tracking fiber and reduced parenchymal inflammation. In vivo luminescence imaging showed that a few of the transplanted luciferase-labeled hUC-MSCs tended to migrate towards the lesion epicenter. Shortened latency and enhanced amplitude were also observed in both motor and sensory evoked potentials, indicating improved signal conduction in the damaged site. Immunofluorescent staining confirmed that a few of the administrated hUC-MSCs integrated into the spinal cord parenchyma and differentiated into astrocytes and oligodendrocytes, but not neurons. Moreover, decreased astrogliosis, increased remyelination, and neuron regeneration could be observed. To the best of our knowledge, this preclinical study provides detailed safety and efficacy evidence regarding intrathecal transplantation of hUC-MSCs in treating SCI for the first time and thus, supports its initiation in the following clinical trial.
Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/citologia , Neurônios/patologia , Traumatismos da Medula Espinal/patologia , Cordão Umbilical/citologia , Astrócitos/patologia , Diferenciação Celular/fisiologia , Células Cultivadas , Condrócitos/patologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodosRESUMO
Fusarium graminearum is the fungal pathogen that causes globally important diseases of cereals and produces mycotoxins such as deoxynivalenol (DON). Owing to the dearth of available sources of resistance to Fusarium pathogens, characterization of novel genes that confer resistance to mycotoxins and mycotoxin-producing fungi is vitally important for breeding resistant crop varieties. In this study, a wheat methionyl-tRNA synthetase (TaMetRS) gene was identified from suspension cell cultures treated with DON. It shares conserved aminoacylation catalytic and tRNA anticodon binding domains with human MetRS and with the only previously characterized plant MetRS, suggesting that it functions in aminoacylation in the cytoplasm. However, the TaMetRS comprises a typical nuclear localization signal and cellular localization studies with a TaMetRS::GFP fusion protein showed that TaMetRS is localized in the nucleus. Expression of TaMetRS was activated by DON treatment and by infection with a DON-producing F. graminearum strain in wheat spikes. No such activation was observed following infection with a non-DON-producing F. graminearum strain. Expression of TaMetRS in Arabidopsis plants conferred significant resistance to DON and F. graminearum. These results indicated that this DON-activated TaMetRS gene may encode a novel type of MetRS in plants that has a role in defense and detoxification.
Assuntos
Fusarium/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metionina tRNA Ligase/metabolismo , Tricotecenos/farmacologia , Triticum/enzimologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Clonagem Molecular , Metionina tRNA Ligase/genética , Dados de Sequência Molecular , Micotoxinas/toxicidade , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente ModificadasRESUMO
BACKGROUND: The midpoint transverse process to pleura (MTP) block, a novel technique for thoracic paravertebral block (TPVB), was first employed in laparoscopic renal cyst decortication. CASE SUMMARY: Thoracic paravertebral nerve block is frequently employed for perioperative analgesia during laparoscopic cyst decortication. To address safety concerns associated with TPVBs, we administered MTP blocks in two patients prior to administering general anesthesia for laparoscopic cyst decortication. The MTP block was performed at the T9 level under ultrasound guidance, with 20 mL of 0.5% ropivacaine injected. Reduced sensation to cold and pinprick was observed from the T8 to T11 dermatome levels. Immediately postoperative Numeric Pain Rating Scale scores were 0/10 at rest and on movement, with none exceeding a mean 24 h numeric rating scale > 3. CONCLUSION: MTP block was effective technique for providing postoperative analgesia for patients undergoing laparoscopic renal cyst decortication.
RESUMO
PURPOSE: To date, our understanding of IgA nephropathy (IgAN) pathophysiology has remained incomplete; therefore, treatment remains largely empiric, and the efficacy and safety of immunosuppressants remain controversial. We aimed to assess the efficacy and safety of hydroxychloroquine and leflunomide therapy in a retrospective cohort of patients with IgAN. METHODS: We screened the IgAN registration database in our department, and a total of 159 kidney patients with biopsy-confirmed IgAN were enrolled, with 57 patients receiving hydroxychloroquine plus a renin-angiotensin system inhibitor (hydroxychloroquine group), 52 patients receiving leflunomide plus a renin-angiotensin system inhibitor (leflunomide group), and 50 patients receiving only a renin-angiotensin system inhibitor (renin-angiotensin system inhibitor-only group). Changes in proteinuria, hematuria, and the estimated glomerular filtration rate (eGFR), as well as adverse events, were analyzed during the follow-up period. RESULTS: At the end of 6-month follow-up, proteinuria significantly decreased by 70.36 (57.54, 79.33)%, 57.29 (46.79, 67.29)% and 41.20 (25.76, 48.94)% in the hydroxychloroquine, leflunomide and renin-angiotensin system inhibitor-only groups, respectively, compared to baseline (all P values < 0.001). Hematuria significantly decreased by 71.07 (56.48, 82.47)% in the leflunomide group (P < 0.001). The eGFR improved by 3.72 ± 2.97%, 3.16 ± 2.00% and 1.91 ± 2.41%, respectively, in the hydroxychloroquine, leflunomide and renin-angiotensin system inhibitor-only groups, but without statistical significance. No serious adverse events occurred during the follow-up period. CONCLUSION: Both hydroxychloroquine combined with a renin-angiotensin system inhibitor and leflunomide combined with a renin-angiotensin system inhibitor were more effective than a renin-angiotensin system inhibitor alone in improving proteinuria in IgAN patients. Hydroxychloroquine was more effective in reducing proteinuria, and leflunomide showed superiority in reducing hematuria. Our results need to be verified in large-scale randomized controlled trials.
Assuntos
Inibidores da Enzima Conversora de Angiotensina , Taxa de Filtração Glomerular , Glomerulonefrite por IGA , Hidroxicloroquina , Leflunomida , Proteinúria , Humanos , Leflunomida/uso terapêutico , Leflunomida/efeitos adversos , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/fisiopatologia , Hidroxicloroquina/uso terapêutico , Hidroxicloroquina/efeitos adversos , Feminino , Masculino , Estudos Retrospectivos , Adulto , Taxa de Filtração Glomerular/efeitos dos fármacos , Pessoa de Meia-Idade , Resultado do Tratamento , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Hematúria/induzido quimicamente , Imunossupressores/uso terapêutico , Imunossupressores/efeitos adversos , Quimioterapia Combinada , Sistema Renina-Angiotensina/efeitos dos fármacosRESUMO
Background: Artemisinin (ART) is a safe and effective antimalarial drug. In recent years, antimalarial drugs have demonstrated a good therapeutic efficacy in IgA nephropathy, suggesting that this may become a new treatment option. Purpose: We aimed to evaluate the effect and mechanism of artemisinin in IgA nephropathy. Methods: In this study, CMap database was used to predict the artemisinin therapeutic effect for IgA nephropathy. A network pharmacology approach was applied to explore the unknown mechanism of artemisinin in IgA nephropathy. We used molecular docking to predict the binding affinity of artemisinin with the targets. A mouse model of IgA nephropathy was established to investigate the therapeutic effect of artemisinin on IgA nephropathy. In vitro, the cell counting Kit-8 assay was used to evaluate the cytotoxicity of artemisinin. Flow cytometry and PCR assays were used to detect the effects of artemisinin on oxidative stress and fibrosis in lipopolysaccharide (LPS)-stimulated mesangial cells. Western blot and immunofluorescence were used to detect the expression of pathway proteins. Results: CMap analysis showed artemisinin may reverse the expression levels of differentially expressed genes in IgA nephropathy. Eighty-seven potential targets of artemisinin in the treatment of IgA nephropathy were screened. Among them, 15 hub targets were identified. Enrichment analysis and GSEA analysis indicated that response to reactive oxygen species is the core biological process. AKT1 and EGFR had the highest docking affinity with artemisinin. In vivo, artemisinin could improve renal injury and fibrosis in mice. In vitro, artemisinin attenuated LPS-induced oxidative stress and fibrosis promoted AKT phosphorylation and Nrf2 nuclear translocation. Conclusion: Artemisinin reduced the level of fibrosis and oxidative stress with IgA nephropathy through the AKT/Nrf2 pathway, which provided an alternative treatment for IgAN.
Assuntos
Antimaláricos , Artemisininas , Glomerulonefrite por IGA , Animais , Camundongos , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Biologia ComputacionalRESUMO
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic messenger RNAs. m6A was discovered in wheat about 40 years ago; however, its potential roles in wheat remain unknown. In this study, we profiled m6As in spikelets transcriptome at the flowering stage of hexaploid wheat and found that m6As are evenly distributed across the A, B, and D subgenomes but their extents and locations vary across homeologous genes. m6As are enriched in homeologous genes with close expression levels and the m6A methylated genes are more conserved. The extent of m6A methylation is negatively correlated with mRNA expression levels and its presence on mRNAs has profound impacts on mRNA translation in a location-dependent manner. Specifically, m6As within coding sequences and 3'UTRs repress the translation of mRNAs while the m6As within 5'UTRs and start codons could promote it. The m6A-containing mRNAs are significantly enriched in processes and pathways of "translation" and "RNA transport," suggesting the potential role of m6As in regulating the translation of genes involved in translation regulation. Our data also show a stronger translation inhibition by small RNAs (miRNA and phasiRNA) than by m6A methylation, and no synergistical effect between the two was observed. We propose a secondary amplification machinery of translation regulation triggered by the changes in m6A methylation status. Taken together, our results suggest translation regulation as a key role played by m6As in hexaploid wheat.
RESUMO
Aspergillus flavus and the produced aflatoxins cause great hazards to food security and human health across all countries. The control of A. flavus and aflatoxins in grains during storage is of great significance to humans. In the current study, bacteria strain YM6 isolated from sea sediment was demonstrated effective in controlling A. flavus by the production of anti-fungal volatiles. According to morphological characteristics and phylogenetic analysis, strain YM6 was identified as Pseudomonas stutzeri. YM6 can produce abundant volatile compounds which could inhibit mycelial growth and conidial germination of A. flavus. Moreover, it greatly prevented fungal infection and aflatoxin production on maize and peanuts during storage. The inhibition rate was 100%. Scanning electron microscopy further supported that the volatiles could destroy the cell structure of A. flavus and prevent conidia germination on the grain surface. Gas chromatography/mass spectrometry revealed that dimethyl trisulfide (DMTS) with a relative abundance of 13% is the most abundant fraction in the volatiles from strain YM6. The minimal inhibitory concentration of DMTS to A. flavus conidia is 200 µL/L (compound volume/airspace volume). Thus, we concluded that Pseudomonas stutzeri YM6 and the produced DMTS showed great inhibition to A. flavus, which could be considered as effective biocontrol agents in further application.
Assuntos
Aflatoxinas , Pseudomonas stutzeri , Humanos , Aspergillus flavus/metabolismo , Aflatoxinas/análise , FilogeniaRESUMO
Controlling the devastating fungal pathogen Fusarium graminearum (Fg) is a challenge due to inadequate resistance in nature. Here, we report on the identification of RNAi molecules and their applications for controlling Fg in wheat through silencing chitin synthase 7 (Chs7), glucan synthase (Gls) and protein kinase C (Pkc). From transgenic Fg strains four RNAi constructs from Chs7 (Chs7RNAi-1, -2, -3, and -4), three RNAi constructs from Gls (GlsRNAi-2, -3, and -6), and one RNAi construct from Pkc (PkcRNAi-5) were identified that displayed effective silencing effects on mycelium growth in medium and pathogenicity in wheat spikes. Transcript levels of Chs7, Gls and Pkc were markedly reduced in those strains. Double-strand RNAs (dsRNAs) of three selected RNAi constructs (Chs7RNAi-4, GlsRNAi-6 and PkcRNA-5) strongly inhibited mycelium growth in vitro. Spray of those dsRNAs on detached wheat leaves significantly reduced lesion sizes; the independent dsRNAs showed comparable effects on lesions with combination of two or three dsRNAs. Expression of three targets Chs7, Gls, and Pkc was substantially down-regulated in Fg-infected wheat leaves. Further application of dsRNAs on wheat spikes in greenhouse significantly reduced infected spikelets. The identified RNAi constructs may be directly used for spray-induced gene silencing and stable expression in plants to control Fusarium pathogens in agriculture.
RESUMO
Deoxynivalenol (DON) is one of the most widespread trichothecene mycotoxins in contaminated cereal products. DON plays a vital role in the pathogenesis of Fusarium graminearum, but the molecular mechanisms of DON underlying Fusarium-wheat interactions are not yet well understood. In this study, a novel wheat ADP-ribosylation factor-like protein 6-interacting protein 4 gene, TaArl6ip4, was identified from DON-treated wheat suspension cells by suppression subtractive hybridization (SSH). The qRT-PCR result suggested that TaArl6ip4 expression is specifically activated by DON in both the Fusarium intermediate susceptible wheat cultivar Zhengmai9023 and the Fusarium resistant cultivar Sumai3. The transient expression results of the TaARL6IP4::GFP fusion protein indicate that TaArl6ip4 encodes a plasma membrane and nucleus-localized protein. Multiple sequence alignment using microscale thermophoresis showed that TaARL6IP4 comprises a conserved DON binding motif, 67HXXXG71, and exhibits DON affinity with a dissociation constant (KD) of 91 ± 2.6 µM. Moreover, TaARL6IP4 exhibited antifungal activity with IC50 values of 22 ± 1.5 µM and 25 ± 2.6 µM against Fusarium graminearum and Alternaria alternata, respectively. Furthermore, TaArl6ip4 interacted with the plasma membrane of Fusarium graminearum spores, resulting in membrane disruption and the leakage of cytoplasmic materials. The heterologous over-expression of TaArl6ip4 conferred greater DON tolerance and Fusarium resistance in Arabidopsis. Finally, we describe a novel DON-induced wheat gene, TaArl6ip4, exhibiting antifungal function and DON affinity that may play a key role in Fusarium-wheat interactions.
RESUMO
BACKGROUND: Posttraumatic acquired facial deformities require surgical treatment, with options including scar revision, fat grafts, implant insertion, and flap coverage. However, each technique has specific advantages and disadvantages.
. METHODS: From 2016 to 2018, 13 patients (eight with scar contracture and five with a depressed scar) were treated using dermofat grafts from the groin. The harvested dermofat was then inserted into the undermined dead space after the contracture was released, and a bolster suture was done for fixation considering the patient's contour and asymmetry. A modified version of the Vancouver Scar Scale and satisfaction survey were used to compare deformity improvements before and after surgery.
. RESULTS: In most cases, effective volume correction and an aesthetically satisfactory contour were maintained well after dermofat grafting, without any major complications. In some cases, however, lipolysis proceeded rapidly when inflammation and infection were not completely eliminated. A significant difference was found in the modified Vancouver Scar Scale before and after surgery, with a p-value of 0.001. The average score on the satisfaction survey was 17.07 out of 20 points.
. CONCLUSION: A dermofat graft with the groin as the donor site can be considered as an effective surgical option that is the simplest and most cost-effective method for the treatment of acquired facial deformities with scar contracture.
RESUMO
The Fusarium mycotoxin deoxynivalenol (DON) is typically controlled by fungicides. Here, we report DON detoxification using enzymes from the highly active Devosia strain D6-9 which degraded DON at 2.5 µg/min/108 cells. Strain D6-9 catabolized DON to 3-keto-DON and 3-epi-DON, completely removing DON in wheat. Genome analysis of three Devosia strains (D6-9, D17, and D13584), with strain D6-9 transcriptomes, identified three genes responsible for DON epimerization. One gene encodes a quinone-dependent DON dehydrogenase QDDH which oxidized DON into 3-keto-DON. Two genes encode the NADPH-dependent aldo/keto reductases AKR13B2 and AKR6D1 that convert 3-keto-DON into 3-epi-DON. Recombinant proteins expressed in Escherichia coli efficiently degraded DON in wheat grains. Molecular docking and site-directed mutagenesis revealed that residues S497, E499, and E535 function in QDDH's DON-oxidizing activity. These results advance potential microbial and enzymatic elimination of DON in agricultural samples and lend insight into the underlying mechanisms and molecular evolution of DON detoxification.
Assuntos
Aldo-Ceto Redutases/metabolismo , Hyphomicrobiaceae/enzimologia , Tricotecenos/metabolismo , Triticum/enzimologia , Fusarium/metabolismo , Simulação de Acoplamento Molecular , NADP/metabolismo , Oxirredução , Quinona Redutases/metabolismoRESUMO
Trichothecenes are the most common mycotoxins contaminating small grain cereals worldwide. The C12,13 epoxide group in the trichothecenes was identified as a toxic group posing harm to humans, farm animals, and plants. Aerobic biological de-epoxidation is considered the ideal method of controlling these types of mycotoxins. In this study, we isolated a novel trichothecene mycotoxin-de-epoxidating bacterium, Desulfitobacterium sp. PGC-3-9, from a consortium obtained from the soil of a wheat field known for the occurrence of frequent Fusarium head blight epidemics under aerobic conditions. Along with MMYPF media, a combination of two antibiotics (sulfadiazine and trimethoprim) substantially increased the relative abundance of Desulfitobacterium species from 1.55% (aerobic) to 29.11% (aerobic) and 28.63% (anaerobic). A single colony purified strain, PGC-3-9, was isolated and a 16S rRNA sequencing analysis determined that it was Desulfitobacterium. The PGC-3-9 strain completely de-epoxidated HT-2, deoxynivalenol (DON), nivalenol and 15-acetyl deoxynivalenol, and efficiently eliminated DON in wheat grains under aerobic and anaerobic conditions. The strain PGC-3-9 exhibited high DON de-epoxidation activity at a wide range of pH (6-10) and temperature (15-50 °C) values under both conditions. This strain may be used for the development of detoxification agents in the agriculture and feed industries and the isolation of de-epoxidation enzymes.
Assuntos
Desulfitobacterium/metabolismo , Grão Comestível/microbiologia , Microbiologia de Alimentos , Fungos/metabolismo , Microbiologia do Solo , Tricotecenos/metabolismo , Triticum/microbiologia , Concentração de Íons de Hidrogênio , Inativação Metabólica , Oxigênio/metabolismo , TemperaturaRESUMO
MicroRNA-like RNAs (milRNAs) post-transcriptionally down-regulate target genes. We investigated Fusarium graminearum (Fg) milRNA expression during fungal vegetative growth and infection of wheat. Small RNA sequencing identified 36 milRNAs from Fg, one of which, Fgmil-2, had >100 transcripts per million in conidia, mycelia and infected wheat, with the highest expression in conidia and the lowest expression in colonized wheat tissue. Fgmil-2 displays perfect homology to the 3'-untranslated region (3'-UTR) of an FgbioH1 messenger RNA that is involved in biotin biosynthesis. Poly(A) polymerase-mediated rapid amplification of cDNA ends combined with sequencing analysis demonstrated that cleavage at a specific site by FgDicer2 in the 3'-UTR of FgbioH1 transcripts generated the Fgmil-2 precursor with a typical hairpin structure. Deletion of FgbioH1 or FgDicer2 genes abolished Fgmil-2 biogenesis. FgbioH1 had an inversely correlated pattern of expression to that of Fgmil-2 and FgDicer2. Deletion of FgbioH1 also showed that it is required for mycelial growth, virulence, mycotoxin biosynthesis and expression of biotin-dependent carboxylase genes. This study reveals in Fg a novel mode of inversely correlated post-transcriptional regulation in which Fgmil-2 originates from its own target transcript, FgbioH, to govern biotin biosynthesis.
Assuntos
Biotina/biossíntese , Fusarium/genética , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , MicroRNAs/genética , RNA Mensageiro/genética , Sequência de Bases , Biomassa , Fusarium/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Virulência/genéticaRESUMO
Contamination by fungal and bacterial species and their metabolites can affect grain quality and health of wheat consumers. In this study, sequence analyses of conserved DNA regions of fungi and bacteria combined with determination of trichothecenes and aflatoxins revealed the microbiome and mycotoxins of wheat from different silo positions (top, middle, and bottom) and storage times (3, 6, 9, and 12 months). The fungal community in wheat on the first day of storage (T0) included 105 classified species (81 genera) and 41 unclassified species. Four species had over 10% of the relative abundance: Alternaria alternata (12%), Filobasidium floriforme (27%), Fusarium graminearum (12%), and Wallemia sebi (12%). Fungal diversity and relative abundance of Fusarium in wheat from top silo positions were significantly lower than at other silo positions during storage. Nivalenol and deoxynivalenol in wheat were 13â»34% higher in all positions at 3 months compared to T0, and mycotoxins in wheat from middle and bottom positions at 6 to 12 months were 24â»57% higher than at T0. The relative abundance of toxigenic Aspergillus and aflatoxins were low at T0 and during storage. This study provides information on implementation and design of fungus and mycotoxin management strategies as well as prediction models.
Assuntos
Aflatoxinas/análise , Grão Comestível/química , Grão Comestível/microbiologia , Contaminação de Alimentos/análise , Tricotecenos/análise , Triticum/química , Triticum/microbiologia , Agricultura/métodos , Bactérias/genética , Bactérias/isolamento & purificação , China , DNA Bacteriano/análise , DNA Fúngico/análise , Monitoramento Ambiental , Fungos/genética , Fungos/isolamento & purificação , MicrobiotaRESUMO
Degradation of toxins by microorganisms is a promising approach for detoxification of agricultural products. Here, a bacterial strain, Sphingomonas S3-4, that has the ability to degrade the mycotoxin deoxynivalenol (DON) was isolated from wheat fields. Incubation of Fusarium-infected wheat grains with S3-4 completely eliminated DON. In S3-4 DON is catabolized into compounds with no detectable phytotoxicity, 3-oxo-DON and 3-epi-DON, via two sequential reactions. Comparative analysis of genome sequences from two DON-degrading strains, S3-4 and Devosia D17, and one non-DON-degrading strain, Sphingobium S26, combined with functional screening of a S3-4 genomic BAC library led to the discovery that a novel aldo/keto reductase superfamily member, AKR18A1, is responsible for oxidation of DON into 3-oxo-DON. DON-degrading activity is completely abolished in a mutant S3-4 strain where the AKR18A1 gene is disrupted. Recombinant AKR18A1 protein expressed in Escherichia coli catalyzed the reversible oxidation/reduction of DON at a wide range of pH values (7.5 to 11) and temperatures (10 to 50 °C). The S3-4 strain and recombinant AKR18A1 also catabolized zearalenone and the aldehydes glyoxal and methyglyoxal. The S3-4 strain and the AKR18A1 gene are promising agents for the control of Fusarium pathogens and detoxification of mycotoxins in plants and in food/feed products.
Assuntos
Aldo-Ceto Redutases/metabolismo , Biotransformação , Fusarium/metabolismo , Micotoxinas/metabolismo , Microbiologia do Solo , Sphingomonas/metabolismo , Aldo-Ceto Redutases/genética , Clonagem Molecular , Ativação Enzimática , Cromatografia Gasosa-Espectrometria de Massas , Genômica , Espectroscopia de Ressonância Magnética , Metaboloma , Metabolômica/métodos , Estrutura Molecular , Micotoxinas/química , Proteínas Recombinantes , Plântula , Análise de Sequência de DNA , Triticum/crescimento & desenvolvimento , Triticum/metabolismoRESUMO
Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5-10) and temperatures (20-37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 µg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.
Assuntos
Microbiologia do Solo , Tricotecenos/metabolismo , Aerobiose , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , DNA Bacteriano/análise , DNA Ribossômico/análise , Compostos de Epóxi/metabolismoRESUMO
Aflatoxigenic Aspergillus fungi and associated aflatoxins are ubiquitous in the production and storage of food/feed commodities. Controlling these microbes is a challenge. In this study, the Shewanella algae strain YM8 was found to produce volatiles that have strong antifungal activity against Aspergillus pathogens. Gas chromatography-mass spectrometry profiling revealed 15 volatile organic compounds (VOCs) emitted from YM8, of which dimethyl trisulfide was the most abundant. We obtained authentic reference standards for six of the VOCs; these all significantly reduced mycelial growth and conidial germination in Aspergillus; dimethyl trisulfide and 2,4-bis(1,1-dimethylethyl)-phenol showed the strongest inhibitory activity. YM8 completely inhibited Aspergillus growth and aflatoxin biosynthesis in maize and peanut samples stored at different water activity levels, and scanning electron microscopy revealed severely damaged conidia and a complete lack of mycelium development and conidiogenesis. YM8 also completely inhibited the growth of eight other agronomically important species of phytopathogenic fungi: A. parasiticus, A. niger, Alternaria alternate, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Monilinia fructicola, and Sclerotinia sclerotiorum. This study demonstrates the susceptibility of Aspergillus and other fungi to VOCs from marine bacteria and indicates a new strategy for effectively controlling these pathogens and the associated mycotoxin production during storage and possibly in the field.
RESUMO
Controlling toxigenic Fusarium graminearum (FG) is challenging. A bacterial strain (S76-3, identified as Bacillus amyloliquefaciens) that was isolated from diseased wheat spikes in the field displayed strong antifungal activity against FG. Reverse-phase high performance liquid chromatography and electrospray ionization mass spectrometry analyses revealed that S76-3 produced three classes of cyclic lipopeptides including iturin, plipastatin and surfactin. Each class consisted of several different molecules. The iturin and plipastatin fractions strongly inhibited FG; the surfactin fractions did not. The most abundant compound that had antagonistic activity from the iturin fraction was iturin A (m/z 1043.35); the most abundant active compound from the plipastatin fraction was plipastatin A (m/z 1463.90). These compounds were analyzed with collision-induced dissociation mass spectrometry. The two purified compounds displayed strong fungicidal activity, completely killing conidial spores at the minimal inhibitory concentration range of 50 µg/ml (iturin A) and 100 µg/ml (plipastatin A). Optical and fluorescence microscopy analyses revealed severe morphological changes in conidia and substantial distortions in FG hyphae treated with iturin A or plipastatin A. Iturin A caused leakage and/or inactivation of FG cellular contents and plipastatin A caused vacuolation. Time-lapse imaging of dynamic antagonistic processes illustrated that iturin A caused distortion and conglobation along hyphae and inhibited branch formation and growth, while plipastatin A caused conglobation in young hyphae and branch tips. Transmission electron microscopy analyses demonstrated that the cell walls of conidia and hyphae of iturin A and plipastatin A treated FG had large gaps and that their plasma membranes were severely damaged and separated from cell walls.
Assuntos
Antibiose , Bacillus/metabolismo , Ácidos Graxos/metabolismo , Fusarium/metabolismo , Oligopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Triticum/microbiologia , Sequência de Aminoácidos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/ultraestrutura , Testes de Sensibilidade Microbiana , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Doenças das Plantas/microbiologiaRESUMO
BACKGROUND & OBJECTIVE: Several reports have showed that three histologic variables (venous invasion, regional lymph node status, and depth of primary tumor penetration) were associated with the prognosis of colorectal adenocarcinoma patients. Based on these variables, a new classification system has been recommended. This study was designed to evaluate prognostic significance and risk factors of neoplasm in low and middle rectal cancer. METHODS: Four hundreds and eighty-four consecutive patients with low and middle rectal cancer were treated by the abdominoperineal resection (APR) (356 patients) and the low anterior resection(LAR) (128 patients) between 1990 and 1996. To determine the independent prognostic variables, the variables were evaluated both univariately and multivariately from the perspectives of oncologic outcome. RESULTS: The 5-year survival rate for all patients was 71.1% (344/484), 63.5% (226/356) for APR and 92.2% (118/128) for LAR/SSR, respectively (P < 0.01). The resulting multivariate analysis using Cox regression showed that the three tumor variables were significantly associated with the 5-year survival (P < 0.01), the independent prognostic variables included venous invasion, tumor size, and TNM stages. CONCLUSIONS: The three tumor variables identified in multivariate analysis as bearing the strongest independent effect on the 5-year survival in low and middle rectal cancer were (in order to decrease prognostic impact) venous invasion, tumor size, and TNM stages. These three tumor variables may be used as important bases for a new classification system.