Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012334, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941356

RESUMO

Plasmodium vivax serological exposure markers (SEMs) have emerged as promising tools for the actionable surveillance and implementation of targeted interventions to accelerate malaria elimination. To determine the dynamic profiles of SEMs in current and past P. vivax infections, we screened and selected 11 P. vivax proteins from 210 putative proteins using protein arrays, with a set of serum samples obtained from patients with acute P. vivax and documented past P. vivax infections. Then we used a murine protein immune model to initially investigate the humoral and memory B cell response involved in the generation of long-lived antibodies. We show that of the 11 proteins, especially C-terminal 42-kDa region of P. vivax merozoite surface protein 1 (PvMSP1-42) induced longer-lasting long-lived antibodies, as these antibodies were detected in individuals infected with P. vivax in the 1960-1970s who were not re-infected until 2012. In addition, we provide a potential mechanism for the maintenance of long-lived antibodies after the induction of PvMSP1-42. The results indicate that PvMSP1-42 induces more CD73+CD80+ memory B cells (MBCs) compared to P. vivax GPI-anchored micronemal antigen (PvGAMA), allowing IgG anti-PvMSP1-42 antibodies to be maintained for a long time.

2.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807422

RESUMO

To verify the size and emergence time of new permeability pathways (NPPs) in malaria parasites, the permeability of the Plasmodium falciparum-infected erythrocytes was tested with different particle sizes of nanomaterials by flow cytometry assay. The results confirmed the permeability of the host cell membrane increases with parasite maturation for the stage-development evolution of NPPs, and especially found that a particle size of about 50 nm had higher efficiency. As a kind of the novel nanomaterials, nitrogen-doped carbon dots (NCDs) showed no toxicity, specificity binding ability to the malaria parasites, and could label live elder blood-stage P. falciparum through NPPs, indicating the potential application in cell imaging. NPPs and some nanomaterials such as NCDs deserve more attention and exploration for the elimination and prevention of malaria.


Assuntos
Malária Falciparum , Malária , Humanos , Carbono/metabolismo , Permeabilidade da Membrana Celular , Eritrócitos/parasitologia , Malária/metabolismo , Malária Falciparum/parasitologia , Nitrogênio/metabolismo , Permeabilidade , Plasmodium falciparum
3.
Microb Pathog ; 110: 225-231, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28687320

RESUMO

Chronic burn wound infections caused by Stapyhylococcus aureus (S. aureus) are largely associated with biofilm formation. However, the mechanism by which S. aureus form biofilm in clinical environments is far less understood. In the present study we addressed the association between biofilm formation and membrane vesicle (MV) secretion of S. aureus during vancomycin treatment. A representative methicillin-resistant S. aureus (MRSA) strain BWMR22 obtained from a chronic burn wound was used in this study. Transmission electron microscope was used to observe the MV secretion. Fourier transform infrared spectroscopy was used to analyze the chemical component of MV. Biofilm formation was assayed under conditions of sub-inhibitory concentrations of vancomycin. Functional potencies of MV in surface adhesion and auto-aggregation were assayed in the presence of additional purified MVs. Biofilm formation by S. aureus BWMR22 was enhanced in the presence of sub-inhibitory concentration of vancomycin. Vancomycin treatment caused an increase in the chemical composition of protein relative to carbohydrates of secreted MVs, a property which was highly associated with bacterial hydrophobicity, surface adhesion, and intercellular aggregation. These findings suggest that MV secretion is correlated with biofilm formation by MRSA especially under clinical conditions with improper vancomycin chemotherapy. This study first demonstrates a potential role of MVs in the biofilm formation by S. aureus, stresses on the importance of avoiding low dose of antibiotic therapy in controlling of S. aureus infections, and provides further information to reveal the mechanisms behind MRSA infections.


Assuntos
Sistemas de Secreção Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Vancomicina/farmacologia , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/metabolismo , Sistemas de Secreção Bacterianos/ultraestrutura , Agregação Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Vancomicina/administração & dosagem
4.
Biomacromolecules ; 17(2): 572-9, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26741638

RESUMO

The aim of this work is to examine how adhered individual cells could detach from the patterned, discontinuous thermoresponsive coating substrate and how different patterns in the form of thermoresponsive squares and gaps would affect cell detachment. Microgels prepared from copolymerization of N-isopropylacrylamide and styrene (pNIPAAmSt) were spin-coated on polyethylenimine (PEI) precoated glass coverslips to form a uniform microgel monolayer; then a surface-moisturized PMDS stamp was used to contact the microgel monolayer at room temperature. The thin layer of water on the PDMS stamp surface worked as an ink to penetrate the microgels so that any microgels in direct contact with the wet stamp surface became swollen and could be peeled away, while uncontacted microgels formed patterns. Using this method, various patterns with different thermo-island diameters and gaps could be fabricated. NIH3T3 fibroblast cells were then cultured on these patterns to study their detachment behavior. It was found that cells could detach not only from these discontinuous thermoresponsive coatings, but also from the patterned surfaces with the thermoresponsive area being as low as 20% of the cell spread area.


Assuntos
Fibroblastos/fisiologia , Poliestirenos/química , Acrilamidas/química , Animais , Adesão Celular , Géis , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Polietilenoimina/química , Propriedades de Superfície , Temperatura
5.
Antimicrob Agents Chemother ; 59(8): 4817-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26033730

RESUMO

Chronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency of Acinetobacter baumannii and the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolated A. baumannii strains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designated A. baumannii ABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI, adeB, adeG, adeJ, carO, and ompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation of adeG correlated with biofilm induction. The consistent upregulation of adeG and abaI was detected in A-III-type A. baumannii in response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused by A. baumannii. This study provides useful information for the development of antibiofilm strategies.


Assuntos
Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana Transportadoras/genética , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Percepção de Quorum/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Biomacromolecules ; 15(11): 4021-31, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25312914

RESUMO

Monodisperse poly(N-isopropylacrylamide-styrene) (PNIPAAmSt) microgels with different St/NIPAAm ratios have been synthesized via a one-step surfactant-free emulsion polymerization process. The resulting microgel dispersions were used to fabricate 2D arrays on the surface of silicon wafers/glass coverslips through dip coating. The thermal responsiveness of the PNIPAAmSt microgel arrays was examined by spectroscopic ellipsometry and the results unraveled that the thermoresponsive behavior of the arrays was highly consistent with the microgels dispersed in the bulk, showing high dependence on the content of styrene. The structure of the films varied from nonclose-packed 2D arrays to close-packed 2D arrays, depending on both properties of the microgels and array fabrication conditions. When the weight ratio of styrene was below 40%, the microgel arrays demonstrated effective control for cell growth and detachment across their volume phase transition temperatures (around 28 °C). The extent of swelling of the microgels was the key factor to determine whether the cells could detach from the film easily. For the rather close-packed 2D arrays prepared by the same kind of PNIPAAmSt microgels, the gaps between microgel particles showed no obvious effect on the rate of cell detachment.


Assuntos
Acrilamidas/química , Acrilamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Géis/química , Géis/farmacologia , Animais , Camundongos , Células NIH 3T3
7.
Biomacromolecules ; 14(10): 3615-25, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23972078

RESUMO

This work reports the formation of thermoresponsive poly(N-isopropylacrylamide-co-styrene) (PNIPAAmSt) microgel films and their use for cell growth and detachment via temperature stimuli. Thermoresponsive surface films can be conveniently produced by spin-coating or drop-coating of PNIPAAmSt microgel dispersions onto substrates such as glass coverslips, cell culture plates, and flasks, making this technique widely accessible. The thickness, stability, and reversibility of the PNIPAAmSt films coated on silicon wafers with respect to temperature switching were examined by spectroscopic ellipsometry (SE) and atomic force microscopy (AFM). The results unraveled the direct link between thermoreversibility and changes in film thickness and surface morphology, showing reversible hydration and dehydration. Under different coating conditions, well-packed microgel monolayers could be utilized for effective cell recovery and harvesting. Furthermore, cell adhesion and detachment processes were reversible and there was no sign of loss of cell viability during repeated surface attachment, growth, and detachment, showing a mild interaction between cells and thermoresponsive surface. More importantly, there was little deterioration of the packing of the thermoresponsive films or any major loss of microgel particles during reuse, indicating their robustness. These PNIPAAmSt microgel films thus open up a convenient interfacial platform for cell and cell sheet harvesting while avoiding the damage of enzymatic cleavage.


Assuntos
Resinas Acrílicas/química , Separação Celular/métodos , Géis/química , Poliestirenos/química , Temperatura , Animais , Adesão Celular , Técnicas de Cultura de Células , Separação Celular/instrumentação , Células Cultivadas , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Propriedades de Superfície
8.
Biomaterials ; 295: 122036, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804660

RESUMO

Osteoarthritis (OA) is a common joint condition that is a leading cause of disability worldwide. There are currently no disease-modifying treatments for osteoarthritis, which is associated with multiple kinds of inflammatory cytokines produced by M1 macrophages in the synovium of the joint. Despite recent therapeutic advancements with anti-cytokine biologics, the OA therapy response rate continues to be inadequate. To treat OA, the pro-inflammatory and anti-inflammatory responses of synoviocytes and macrophages must be controlled simultaneously. Therefore, the immune regulation capabilities of an ideal nano-drug should not only minimize pro-inflammatory responses but also effectively boost anti-inflammatory responses. In this paper, an M2H@RPK nanotherapeutic system was developed, KAFAK and shRNA-LEPR were condensed with polyethylenimine (PEI) to form a complex, which was then modified with hyaluronic acid (HA) to negatively charge to cover the M2 membrane. It was discovered that the repolarization of macrophages from the M1 to the M2 phenotype lowered pro-inflammatory responses while enhancing anti-inflammatory responses in macrophages and synoviocytes. In vitro and in vivo studies demonstrate that M2H@RPK dramatically decreases proinflammatory cytokines, controls synovial inflammation, and provides significant therapeutic efficacy by reducing joint damage. Overall, it has been demonstrated that M2H@RPK provides inflammation-targeted therapy by macrophage repolarization, and it represents a promising OA therapeutic strategy.


Assuntos
Nanopartículas , Osteoartrite , Sinovite , Humanos , Osteoartrite/tratamento farmacológico , Sinovite/tratamento farmacológico , Sinovite/complicações , Inflamação , Macrófagos , Membrana Sinovial , Citocinas , Anti-Inflamatórios/farmacologia , Nanopartículas/uso terapêutico
9.
Biomaterials ; 293: 121975, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580720

RESUMO

Bladder cancer is one of the most common malignant tumors in the urinary system worldwide. The poor permeability and uncontrollable release of drug and hypoxia of tumor tissues were the main reasons leading to poor therapeutic effect of chemo-photodynamic therapy for bladder cancer. To solve the above problems, a tumor-targeting peptide Arg-Gly-Asp (RGD) modified platinum nanozyme (PtNP) co-loaded glutathione (GSH)-responsive prodrug nanoparticles (PTX-SS-HPPH/Pt@RGD-NP) was constructed. Firstly, a GSH-responsive prodrug (PTX-SS-HPPH) was prepared by introducing a disulfide bond between paclitaxel (PTX) and photosensitizer 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH), which could realize the GSH-responsive release of the drug at the tumor sites. Also, the distearoylphosphoethanolamine-poly (ethylene glycol)-RGD peptide (DSPE-PEG-RGD) modified the prodrug to enhance the targeting and permeability ability to bladder cancer cells. Besides, to alleviate the hypoxia of tumor tissues, PtNP was introduced to produce oxygen (O2) and improve photodynamic therapy efficiency. The results showed that the PTX-SS-HPPH/Pt@RGD-NP could achieve GSH-responsive drug release in tumor microenvironment, enhance the drug accumulation time and permeability at tumor sites in T24 subcutaneous tumor model and T24 orthotopic bladder tumor model, and alleviate hypoxia in tumor tissues, thus realizing enhanced chemo-photodynamic therapy for bladder cancer, and providing new strategies and methods for clinical treatment of bladder cancer.


Assuntos
Nanopartículas , Oligopeptídeos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Pró-Fármacos , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Glutationa , Nanopartículas/química , Oligopeptídeos/química , Paclitaxel/uso terapêutico , Paclitaxel/química , Fármacos Fotossensibilizantes/uso terapêutico , Platina/uso terapêutico , Polietilenoglicóis/química , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico
10.
Small Methods ; 7(5): e2201087, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36572641

RESUMO

Synergistic photothermal immunotherapy has emerged as a favorable therapeutic approach to fight cancer. However, design of an effective photothermal immunotherapy system to suppress tumor growth and simultaneously inhibit tumor metastases continues to be a challenge. Here a dual toll-like receptor agonists delivery system CPG@Au NRs/m-R848 for combined photothermal immunotherapy of melanoma is developed. CPG@Au NRs/m-R848 displays strong antitumor effects by promoting maturation of dendritic cells (DCs) and reprogramming of M2 macrophages into M1 phenotype. Moreover, immunogenic cell death (ICD) induced by photothermal ablation of Au NRs could synergistically produce in situ vaccination effect with CPG ODN and R848, generating systemic and lasting antitumor immunity. It is further proved that CPG@Au NRs/m-R848 treatment inhibits tumor growth in bilateral B16F10 tumors model by eliciting CD8+ T cell response. Overall, this work suggests that this strategy hold great potential in tumor immunotherapy by regulating tumor-associated macrophage polarization, triggering DCs maturation and inducing ICD.


Assuntos
Melanoma , Nanotubos , Humanos , Micelas , Ouro , Melanoma/terapia , Macrófagos , Imunoterapia
11.
Front Bioeng Biotechnol ; 11: 1259696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662437

RESUMO

The clinical challenge of bone defects in the craniomaxillofacial region, which can lead to significant physiological dysfunction and psychological distress, persists due to the complex and unique anatomy of craniomaxillofacial bones. These critical-sized defects require the use of bone grafts or substitutes for effective reconstruction. However, current biomaterials and methods have specific limitations in meeting the clinical demands for structural reinforcement, mechanical support, exceptional biological performance, and aesthetically pleasing reconstruction of the facial structure. These drawbacks have led to a growing need for novel materials and technologies. The growing development of 3D printing can offer significant advantages to address these issues, as demonstrated by the fabrication of patient-specific bioactive constructs with controlled structural design for complex bone defects in medical applications using this technology. Poly (ether ether ketone) (PEEK), among a number of materials used, is gaining recognition as a feasible substitute for a customized structure that closely resembles natural bone. It has proven to be an excellent, conformable, and 3D-printable material with the potential to replace traditional autografts and titanium implants. However, its biological inertness poses certain limitations. Therefore, this review summarizes the distinctive features of craniomaxillofacial bones and current methods for bone reconstruction, and then focuses on the increasingly applied 3D printed PEEK constructs in this field and an update on the advanced modifications for improved mechanical properties, biological performance, and antibacterial capacity. Exploring the potential of 3D printed PEEK is expected to lead to more cost-effective, biocompatible, and personalized treatment of craniomaxillofacial bone defects in clinical applications.

12.
Parasit Vectors ; 16(1): 269, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553591

RESUMO

BACKGROUND: Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease has been underestimated. Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII) is an essential ligand for reticulocyte recognition and host cell invasion by P. ovale curtisi. However, the genomic variation, antigenicity and immunogenicity of PocDBP-RII remain major knowledge gaps. METHODS: A total of 93 P. ovale curtisi samples were collected from migrant workers who returned to China from 17 countries in Africa between 2012 and 2016. The genetic polymorphism, natural selection and copy number variation (CNV) were investigated by sequencing and real-time PCR. The antigenicity and immunogenicity of the recombinant PocDBP-RII (rPocDBP-RII) protein were further examined, and the humoral and cellular responses of immunized mice were assessed using protein microarrays and flow cytometry. RESULTS: Efficiently expressed and purified rPocDBP-RII (39 kDa) was successfully used as an antigen for immunization in mice. The haplotype diversity (Hd) of PocDBP-RII gene was 0.105, and the nucleotide diversity index (π) was 0.00011. No increased copy number was found among the collected isolates of P. ovale curtisi. Furthermore, rPocDBP-RII induced persistent antigen-specific antibody production with a serum IgG antibody titer of 1: 16,000. IFN-γ-producing T cells, rather than IL-10-producing cells, were activated in response to the stimulation of rPocDBP-RII. Compared to PBS-immunized mice (negative control), there was a higher percentage of CD4+CD44highCD62L- T cells (effector memory T cells) and CD8+CD44highCD62L+ T cells (central memory T cells) in rPocDBP-RII­immunized mice. CONCLUSIONS: PocDBP-RII sequences were highly conserved in clinical isolates of P. ovale curtisi. rPocDBP-RII protein could mediate protective blood-stage immunity through IFN-γ-producing CD4+ and CD8+ T cells and memory T cells, in addition to inducing specific antibodies. Our results suggested that rPocDBP-RII protein has potential as a vaccine candidate to provide assessment and guidance for malaria control and elimination activities.


Assuntos
Malária , Plasmodium ovale , Animais , Camundongos , Plasmodium ovale/genética , Interferon gama/genética , Linfócitos T CD8-Positivos , Variações do Número de Cópias de DNA , Domínios Proteicos , Malária/prevenção & controle
13.
Pathogens ; 11(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35215091

RESUMO

This study was designed to assess the influence of efflux pump activity on the biofilm formation in Salmonella Typhimurium. Salmonella enterica subsp. enterica serovar Typhimurium ATCC 19585 (STWT) and clinically isolated S. Typhimurium CCARM 8009 (STCI) were treated with ceftriaxone (CEF), chloramphenicol (CHL), ciprofloxacin (CIP), erythromycin (ERY), norfloxacin (NOR), and tetracycline (TET) in autoinducer-containing media in the absence and presence of phenylalanine-arginine ß-naphthylamide (PAßN) to compare efflux pump activity with biofilm-forming ability. The susceptibilities of STWT and STCI were increased in the presence of PAßN. ERY+PAßN showed the highest decrease in the minimum inhibitory concentration (MIC) of ERY from 256 to 2 µg/mL against STWT and STCI. The antimicrobial activity of NOR against planktonic cells was significantly increased in the presence of PAßN, showing the lowest numbers of STWT (3.2 log CFU/cm2), and the TET+PAßN effectively inhibited the growth of STCI (5.2 log CFU/cm2). The lowest biofilm-forming abilities were observed at NOR+PAßN against STWT (biofilm-forming index, BFI < 0.41) and CEF+PAßN against STCI (BFI = 0.32). The bacteria swimming motility and relative fitness varied depending on the antibiotic and PAßN treatments. The motility diameters of STWT were significantly decreased by NOR+PAßN (6 mm) and TET+PAßN (15 mm), while the lowest motility of STCI was observed at CIP+PAßN (8 mm). The significant decrease in the relative fitness levels of STWT and STCI was observed at CIP+PAßN and NOR+PAßN. The PAßN as an efflux pump inhibitor (EPI) can improve the antimicrobial and anti-biofilm efficacy of antibiotics against S. Typhimurium. This study provides useful information for understanding the role of efflux pump activity in quorum sensing-regulated biofilm formation and also emphasizes the necessity of the discovery of novel EPIs for controlling biofilm formation by antibiotic-resistant pathogens.

14.
Acta Pharm Sin B ; 12(6): 2710-2730, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35755283

RESUMO

Breast cancer has become the most commonly diagnosed cancer type in the world. A combination of chemotherapy and photothermal therapy (PTT) has emerged as a promising strategy for breast cancer therapy. However, the intricacy of precise delivery and the ability to initiate drug release in specific tumor sites remains a challenging puzzle. Therefore, to ensure that the therapeutic agents are synchronously delivered to the tumor site for their synergistic effect, a multifunctional nanoparticle system (PCRHNs) is developed, which is grafted onto the prussian blue nanoparticles (PB NPs) by reduction-responsive camptothecin (CPT) prodrug copolymer, and then modified with tumor-targeting peptide cyclo(Asp-d-Phe-Lys-Arg-Gly) (cRGD) and hyaluronic acid (HA). PCRHNs exhibited nano-sized structure with good monodispersity, high load efficiency of CPT, triggered CPT release in response to reduction environment, and excellent photothermal conversion under laser irradiation. Furthermore, PCRHNs can act as a photoacoustic imaging contrast agent-guided PTT. In vivo studies indicate that PCRHNs exhibited excellent biocompatibility, prolonged blood circulation, enhanced tumor accumulation, allow tumor-specific chemo-photothermal therapy to achieve synergistic antitumor effects with reduced systemic toxicity. Moreover, hyperthermia-induced upregulation of heat shock protein 70 in the tumor cells could be inhibited by CPT. Collectively, PCRHNs may be a promising therapeutic way for breast cancer therapy.

15.
Microbiol Spectr ; 10(1): e0176821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196792

RESUMO

Carbapenem resistance of Acinetobacter baumannii poses challenges to public health. Biofilm contributes to the persistence of A. baumannii cells. This study was designed to investigate the genetic relationships among carbapenem resistance, polymyxin resistance, multidrug resistance, biofilm formation, and surface-associated motility and evaluate the antibiofilm effect of polymyxin in combination with other antibiotics. A total of 103 clinical A. baumannii strains were used to determine antibiotic susceptibility, biofilm formation capacity, and motility. Enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting was used to determine the genetic variation among strains. The distribution of 17 genes related to the resistance-nodulation-cell division (RND)-type efflux, autoinducer-receptor (AbaI/AbaR) quorum sensing, oxacillinases (OXA)-23, and insertion sequence of ISAba1 element was investigated. The representative strains were chosen to evaluate the gene transcription and the antibiofilm activity by polymyxin B (PB) in combination with merapenem, levofloxacin, and ceftazidime, respectively. ERIC-PCR-dependent fingerprints were found to be associated with carbapenem resistance and multidrug resistance. The presence of blaOXA-23 was found to correlate with genes involved in ISAba1 insertion, AbaI/AbaR quorum sensing, and AdeABC efflux. Carbapenem resistance was observed to be negatively correlated with biofilm formation and positively correlated with motility. PB in combination with ceftazidime displayed a synergistic antibiofilm effect against robust biofilm formed by an A. baumannii strain with deficiency in AbaI/AbaR quorum sensing. Our results not only clarify the genetic correlation among carbapenem resistance, biofilm formation, and pathogenicity in a certain level but also provide a theoretical basis for clinical applications of polymyxin-based combination of antibiotics in antibiofilm therapy. IMPORTANCE Deeper explorations of molecular correlation among antibiotic resistance, biofilm formation, and pathogenicity could provide novel insights that would facilitate the development of therapeutics and prevention against A. baumannii biofilm-related infections. The major finding that polymyxin B in combination with ceftazidime displayed a synergistic antibiofilm effect against robust biofilm formed by an A. baumannii strain with genetic deficiency in AbaI/AbaR quorum sensing further provides a theoretical basis for clinical applications of antibiotics in combination with quorum quenching in antibiofilm therapy.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Ceftazidima/uso terapêutico , Polimixina B/uso terapêutico , Percepção de Quorum/genética , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada/métodos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Polimixina B/farmacologia , Percepção de Quorum/efeitos dos fármacos , beta-Lactamases/genética
16.
Research (Wash D C) ; 2022: 9768687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35233535

RESUMO

Improving the efficacy of melanoma treatment remains an important global challenge. Here, we combined chemotherapy with protein tyrosine phosphatase nonreceptor type 2(Ptpn2) based immunotherapy in an effort to address this challenge. Short-hairpin RNA (shRNA) targeting Ptpn2 was coencapsulated with doxorubicin (DOX) in the cell membrane of M1 macrophages (M1HD@RPR). The prepared nanoparticles (NPs) were effectively phagocytosed by B16F10 cells and M1 macrophages, but not by M0 macrophages. Hence, NP evasion from the reticuloendothelial system (RES) was improved and NP enrichment in tumor sites increased. M1HD@RPR can directly kill tumor cells and stimulate immunogenic cell death (ICD) by DOX and downregulate Ptpn2. It can promote M1 macrophage polarization and dendritic cell maturation and increase the proportion of CD8+ T cells. M1HD@RPR killed and inhibited the growth of primary melanoma and lung metastatic tumor cells without harming the surrounding tissue. These findings establish M1HD@RPR as a safe multifunctional nanoparticle capable of effectively combining chemotherapy and gene immunotherapies against melanoma.

17.
Microorganisms ; 10(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893540

RESUMO

As more sporadic cases of chloroquine resistance occur (CQR) in Plasmodium vivax (P. vivax) malaria, molecular markers have become an important tool to monitor the introduction and spread of drug resistance. P. vivax multidrug resistance-associated protein 1 (PvMRP1), as one of the members of the ATP-binding cassette (ABC) transporters, may modulate this phenotype. In this study, we investigated the gene mutations and copy number variations (CNVs) in the pvmrp1 in 102 P. vivax isolates from China, the Republic of Korea (ROK), Myanmar, Papua New Guinea (PNG), Pakistan, the Democratic People's Republic of Korea (PRK), and Cambodia. And we also obtained 72 available global pvmrp1 sequences deposited in the PlasmoDB database to investigate the genetic diversity, haplotype diversity, natural selection, and population structure of pvmrp1. In total, 29 single nucleotide polymorphisms reflected in 23 non-synonymous, five synonymous mutations and one gene deletion were identified, and CNVs were found in 2.9% of the isolates. Combined with the antimalarial drug susceptibility observed in the previous in vitro assays, except the prevalence of S354N between the two CQ sensitivity categories revealed a significant difference, no genetic mutations or CNVs associated with drug sensitivity were found. The genetic polymorphism analysis of 166 isolates worldwide found that the overall nucleotide diversity (π) of pvmrp1 was 0.0011, with 46 haplotypes identified (Hd = 0.9290). The ratio of non-synonymous to synonymous mutations (dn/ds = 0.5536) and the neutrality tests statistic Fu and Li's D* test (Fu and Li's D* = −3.9871, p < 0.02) suggests that pvmrp1 had evolved under a purifying selection. Due to geographical differences, genetic differentiation levels of pvmrp1 in different regions were different to some extent. Overall, this study provides a new idea for finding CQR molecular monitoring of P. vivax and provides more sequences of pvmrp1 in Asia for subsequent research. However, further validation is still needed through laboratory and epidemiological field studies of P. vivax samples from more regions.

18.
Microbiol Spectr ; 10(6): e0278222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354319

RESUMO

The rapid development of methicillin-resistant Staphylococcus aureus (MRSA) drug resistance and the formation of biofilms seriously challenge the clinical application of classic antibiotics. Extracts of the traditional herb Chenopodium ambrosioides L. were found to have strong antibiofilm activity against MRSA, but their mechanism of action remains poorly understood. This study was designed to investigate the antibacterial and antibiofilm activities against MRSA of flavonoids identified from C. ambrosioides L. in combination with classic antibiotics, including ceftazidime, erythromycin, levofloxacin, penicillin G, and vancomycin. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the nonvolatile chemical compositions. Reverse transcription (RT)-PCR was used to investigate potential multitargets of flavonoids based on global transcriptional responses of virulence and antibiotic resistance. A synergistic antibacterial and biofilm-inhibiting activity of the alcoholic extract of the ear of C. ambrosioides L. in combination with penicillin G was observed against MRSA, which proved to be closely related to the interaction of the main components of kaempferol rhamnosides with quercetin. In regard to the mechanism, the increased sensitivity of MRSA to penicillin G was shown to be related to the downregulation of penicillinase with SarA as a potential drug target, while the antibiofilm activity was mainly related to downregulation of various virulence factors involved in the initial and mature stages of biofilm development, with SarA and/or σB as drug targets. This study provides a theoretical basis for further exploration of the medicinal activity of kaempferol rhamnosides and quercetin and their application in combination with penicillin G against MRSA biofilm infection. IMPORTANCE In this study, the synergistic antibacterial and antibiofilm effects of the traditional herb C. ambrosioides L. and the classic antibiotic penicillin G on MRSA provide a potential strategy to deal with the rapid development of MRSA antibiotic resistance. This study also provides a theoretical basis for further optimizing the combined effect of kaempferol rhamnosides, quercetin, and penicillin G and exploring anti-MRSA biofilm infection research with SarA and σB as drug targets.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Quercetina/farmacologia , Quempferóis/farmacologia , Regulação para Baixo , Antibacterianos/farmacologia , Flavonoides/farmacologia , Biofilmes , Resistência às Penicilinas , Testes de Sensibilidade Microbiana
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119284, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33310617

RESUMO

A feasible, effective and non-destructive method that could be used to differentiate architectural paints was proposed by Microscopic laser Raman spectroscopy and chemometrics. A total of 252 white architectural paints from 7 different manufacturers were prepared for evaluating the potential of differentiating them. 5th Newton interpolation polynomial combined with Savitzky-Golay 7-point and 1st or 2nd polynomial smoothing under the 1st-order derivative were considered as the optimal pre-processing method for MLRM data. The Bayes discriminant analysis model realized 100% accuracy based on discriminant functions Z1, Z2 and Z3, which was the more useful and practical method for differentiating white architectural paints than that of multilayer perceptron and radial basis function neural network models. All samples were differentiated exactly, which was rapid and non-destructive. The designed method demonstrated the potential of Microscopic Laser Raman spectroscopy in combination with pre-processing and chemometrics as a universal, confirmatory, and accurate method for the white architectural paint differentiation in forensic science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA