Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 108(5): 772-784, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951040

RESUMO

NEW FINDINGS: What is the central question of this study? What are the cardiovascular consequences of periconceptual ethanol on offspring throughout the lifespan? What is the main finding and its importance? It is shown for the first time that periconceptional alcohol has sex-specific effects on heart growth, with ageing female offspring exhibiting decreased cardiac output. Altered in vivo cardiac function in ageing female offspring may be linked to changes in cardiac oestrogen receptor expression. ABSTRACT: Alcohol exposure throughout gestation is detrimental to cardiac development and function. Although many women decrease alcohol consumption once aware of a pregnancy, exposure prior to recognition is common. We, therefore, examined the effects of periconceptional alcohol exposure (PC:EtOH) on heart function, and explored mechanisms that may contribute. Female Sprague-Dawley rats received a liquid diet ±12.5% v/v ethanol from 4 days prior to mating until 4 days after mating (PC:EtOH). Cardiac function was assessed via echocardiography, and offspring were culled at multiple time points for assessment of morphometry, isolated heart and aortic ring function, protein and transcriptional changes. PC:EtOH-exposed embryonic day 20 fetuses (but not postnatal offspring) had larger hearts relative to body weight. Ex vivo analysis of hearts at 5-7 months old (mo) indicated no changes in coronary function or cardiac ischaemic tolerance, and apparently improved ventricular compliance in PC:EtOH females (compared to controls). At 12 mo, vascular responses in isolated aortic rings were unaltered by PC:EtOH, whilst echocardiography revealed reduced cardiac output in female but not male PC:EtOH offspring. At 19 mo, left ventricular transcript and protein for type 1 oestrogen receptor (ESR1), HSP90 transcript and plasma oestradiol levels were all elevated in female PC:EtOH exposed offspring. Summarising, PC:EtOH adversely impacts in vivo heart function in mature female offspring, associated with increased ventricular oestrogen-related genes. PC:EtOH may thus influence age-related heart dysfunction in females through modulation of oestrogen signalling.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Receptores de Estrogênio , Gravidez , Masculino , Ratos , Feminino , Animais , Humanos , Ratos Sprague-Dawley , Etanol/farmacologia , Envelhecimento , Estrogênios , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
Eur J Neurosci ; 56(4): 4333-4362, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763309

RESUMO

Stress resilience, and behavioural and cardiovascular impacts of chronic stress, are theorised to involve integrated neuro-endocrine/inflammatory/transmitter/trophin signalling. We tested for this integration, and whether behaviour/emotionality, together with myocardial ischaemic tolerance, are consistently linked to these pathways across diverse conditions in male C57Bl/6 mice. This included Restraint Stress (RS), 1 h restraint/day for 14 days; Chronic Unpredictable Mild Stress (CUMS), seven stressors randomised over 21 days; Social Stress (SS), 35 days social isolation with brief social encounters in final 13 days; and Control conditions (CTRL; un-stressed mice). Behaviour was assessed via open field (OFT) and sucrose preference (SPT) tests, and neurobiology from frontal cortex (FC) and hippocampal transcripts. Endocrine factors, and function and ischaemic tolerance in isolated hearts, were also measured. Model characteristics ranged from no behavioural or myocardial changes with homotypic RS, to increased emotionality and cardiac ischaemic injury (with apparently distinct endocrine/neurobiological profiles) in CUMS and SS models. Highly integrated expression of HPA axis, neuro-inflammatory, BDNF, monoamine, GABA, cannabinoid and opioid signalling genes was confirmed across conditions, and consistent/potentially causal correlations identified for (i) locomotor activity (noradrenaline, ghrelin; FC Crhr1, Tnfrsf1b, Il33, Nfkb1, Maoa, Gabra1; hippocampal Il33); (ii) thigmotaxis (adrenaline, leptin); (iii) anxiety-like behaviour (adrenaline, leptin; FC Tnfrsf1a; hippocampal Il33); (iv) depressive-like behaviour (ghrelin; FC/hippocampal s100a8); and (v) cardiac stress-resistance (noradrenaline, leptin; FC Il33, Tnfrsf1b, Htr1a, Gabra1, Gabrg2; hippocampal Il33, Tnfrsf1a, Maoa, Drd2). Data support highly integrated pathway responses to stress, and consistent adipokine, sympatho-adrenergic, inflammatory and monoamine involvement in mood and myocardial disturbances across diverse conditions.


Assuntos
Antidepressivos , Depressão , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Epinefrina , Grelina , Sistema Hipotálamo-Hipofisário/metabolismo , Interleucina-33/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo
3.
J Neurosci Res ; 100(11): 2004-2027, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36059192

RESUMO

Psychosocial stress promotes and links mood and cardiovascular disorders in a sex-specific manner. However, findings in animal models are equivocal, in some cases opposing human dimorphisms. We examined central nervous system (CNS), behavioral, endocrine, cardiac, and hepatic outcomes in male or female C57Bl/6 mice subjected to chronic social stress (56 days of social isolation, with intermittent social confrontation encounters twice daily throughout the final 20 days). Females exhibited distinct physiological and behavioral changes, including relative weight loss, and increases in coronary resistance, hepatic inflammation, and thigmotaxic behavior in the open field. Males evidence reductions in coronary resistance and cardiac ischemic tolerance, with increased circulating and hippocampal monoamine levels and emerging anhedonia. Shared CNS gene responses include reduced hippocampal Maoa and increased Htr1b expression, while unique responses include repression of hypothalamic Ntrk1 and upregulation of cortical Nrf2 and Htr1b in females; and repression of hippocampal Drd1 and hypothalamic Gabra1 and Oprm in males. Declining cardiac stress resistance in males was associated with repression of cardiac leptin levels and metabolic, mitochondrial biogenesis, and anti-inflammatory gene expression. These integrated data reveal distinct biological responses to social stress in males and females, and collectively evidence greater biological disruption or allostatic load in females (consistent with propensities to stress-related mood and cardiovascular disorders in humans). Distinct stress biology, and molecular to organ responses, emphasize the importance of sex-specific mechanisms and potential approaches to stress-dependent disease.


Assuntos
Ansiedade , Leptina , Animais , Ansiedade/psicologia , Comportamento Animal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Estresse Psicológico/psicologia
4.
FASEB J ; 35(3): e21407, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33583084

RESUMO

The obesity epidemic has increased type II diabetes mellitus (T2DM) across developed countries. Cardiac T2DM risks include ischemic heart disease, heart failure with preserved ejection fraction, intolerance to ischemia-reperfusion (I-R) injury, and refractoriness to cardioprotection. While opioids are cardioprotective, T2DM causes opioid receptor signaling dysfunction. We tested the hypothesis that sustained opioid receptor stimulus may overcome diabetes mellitus-induced cardiac dysfunction via membrane/mitochondrial-dependent protection. In a murine T2DM model, we investigated effects of morphine on cardiac function, I-R tolerance, ultrastructure, subcellular cholesterol expression, mitochondrial protein abundance, and mitochondrial function. T2DM induced 25% weight gain, hyperglycemia, glucose intolerance, cardiac hypertrophy, moderate cardiac depression, exaggerated postischemic myocardial dysfunction, abnormalities in mitochondrial respiration, ultrastructure and Ca2+ -induced swelling, and cell death were all evident. Morphine administration for 5 days: (1) improved glucose homeostasis; (2) reversed cardiac depression; (3) enhanced I-R tolerance; (4) restored mitochondrial ultrastructure; (5) improved mitochondrial function; (6) upregulated Stat3 protein; and (7) preserved membrane cholesterol homeostasis. These data show that morphine treatment restores contractile function, ischemic tolerance, mitochondrial structure and function, and membrane dynamics in type II diabetic hearts. These findings suggest potential translational value for short-term, but high-dose morphine administration in diabetic patients undergoing or recovering from acute ischemic cardiovascular events.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Morfina/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Animais , Humanos , Camundongos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/etiologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Br J Nutr ; 127(4): 540-553, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33858529

RESUMO

Linoleic acid (LA), an essential n-6 fatty acid (FA), is critical for fetal development. We investigated the effects of maternal high LA (HLA) diet on offspring cardiac development and its relationship to circulating FA and cardiovascular function in adolescent offspring, and the ability of the postnatal diet to reverse any adverse effects. Female Wistar Kyoto rats were fed low LA (LLA; 1·44 % energy from LA) or high LA (HLA; 6·21 % energy from LA) diets for 10 weeks before pregnancy and during gestation/lactation. Offspring, weaned at postnatal day 25, were fed LLA or HLA diets and euthanised at postnatal day 40 (n 6-8). Maternal HLA diet decreased circulating total cholesterol and HDL-cholesterol in females and decreased total plasma n-3 FA in males, while maternal and postnatal HLA diets decreased total plasma n-3 FA in females. α-Linolenic acid (ALA) and EPA were decreased by postnatal but not maternal HLA diets in both sexes. Maternal and postnatal HLA diets increased total plasma n-6 and LA, and a maternal HLA diet increased circulating leptin, in both male and female offspring. Maternal HLA decreased slopes of systolic and diastolic pressure-volume relationship (PVR), and increased cardiac Col1a1, Col3a1, Atp2a1 and Notch1 in males. Maternal and postnatal HLA diets left-shifted the diastolic PVR in female offspring. Coronary reactivity was altered in females, with differential effects on flow repayment after occlusion. Thus, maternal HLA diets impact lipids, FA and cardiac function in offspring, with postnatal diet modifying FA and cardiac function in the female offspring.


Assuntos
Ácidos Graxos , Ácido Linoleico , Adolescente , Animais , Colesterol , Dieta , Ácidos Graxos Essenciais , Feminino , Humanos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos , Ratos Endogâmicos WKY
6.
Nutr Res Rev ; 34(1): 125-146, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32718365

RESUMO

We critically review potential involvement of trimethylamine N-oxide (TMAO) as a link between diet, the gut microbiota and CVD. Generated primarily from dietary choline and carnitine by gut bacteria and hepatic flavin-containing mono-oxygenase (FMO) activity, TMAO could promote cardiometabolic disease when chronically elevated. However, control of circulating TMAO is poorly understood, and diet, age, body mass, sex hormones, renal clearance, FMO3 expression and genetic background may explain as little as 25 % of TMAO variance. The basis of elevations with obesity, diabetes, atherosclerosis or CHD is similarly ill-defined, although gut microbiota profiles/remodelling appear critical. Elevated TMAO could promote CVD via inflammation, oxidative stress, scavenger receptor up-regulation, reverse cholesterol transport (RCT) inhibition, and cardiovascular dysfunction. However, concentrations influencing inflammation, scavenger receptors and RCT (≥100 µm) are only achieved in advanced heart failure or chronic kidney disease (CKD), and greatly exceed pathogenicity of <1-5 µm levels implied in some TMAO-CVD associations. There is also evidence that CVD risk is insensitive to TMAO variance beyond these levels in omnivores and vegetarians, and that major TMAO sources are cardioprotective. Assessing available evidence suggests that modest elevations in TMAO (≤10 µm) are a non-pathogenic consequence of diverse risk factors (ageing, obesity, dyslipidaemia, insulin resistance/diabetes, renal dysfunction), indirectly reflecting CVD risk without participating mechanistically. Nonetheless, TMAO may surpass a pathogenic threshold as a consequence of CVD/CKD, secondarily promoting disease progression. TMAO might thus reflect early CVD risk while providing a prognostic biomarker or secondary target in established disease, although mechanistic contributions to CVD await confirmation.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Microbiota , Humanos , Metilaminas
7.
Artigo em Inglês | MEDLINE | ID: mdl-32348174

RESUMO

Caveolins regulate myocardial substrate handling, survival signaling and stress-resistance, however control of expression is incompletely defined. We test how metabolic features of type 2 diabetes (T2D), and modulation of cell signaling, influence caveolins in H9c2 cardiomyoblasts. Cells were exposed to glucose (25 vs. 5 mM), insulin (100 nM) or palmitate (0.1 mM), individually or combined, and effects of adenylate cyclase (AC) activation (50 µM forskolin), focal adhesion kinase (FAK) or protein kinase C b2 (PKCß2) inhibition (1 µM FAK Inhibitor 14 or CGP-53353, respectively), or the polyunsaturated fatty acid (PUFA) α-linolenic acid (ALA; 10 µM) were tested. Simulated T2D (elevated glucose+insulin+palmitate) depressed caveolin-1 and -3 without modifying caveolin-2. Caveolin-3 repression was primarily palmitate dependent, whereas high glucose (HG) and insulin independently increased caveolin-3 (yet reduced expression when combined). Differential control was evident: baseline caveolin-3 was suppressed by FAK/PKCß2 and insensitive to AC activities, with baseline caveolin-1 and -2 suppressed by AC and insensitive to FAK/PKCß2. Forskolin and ALA selectively preserved caveolin-3 in T2D cells, whereas PKCb2 and FAK inhibition increased caveolin-3 under all conditions. Despite preservation of caveolin-3, ALA did not modify nucleosome content (apoptosis marker) or transcription of pro-inflammatory mediators in T2D cells. In summary: caveolin-1 and -3 are strongly repressed with simulated T2D, with caveolin-3 particularly sensitive to palmitate; intrinsic PKCb2 and FAK activities repress caveolin-3 in healthy and stressed cells; ALA, AC activation and PKCß2 inhibition preserve caveolin-3 under T2D conditions; and caveolin-3 changes with T2D and ALA appear unrelated to inflammatory signaling and extent of apoptosis.

8.
J Pharmacol Exp Ther ; 372(1): 95-106, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704803

RESUMO

Dynamin-related protein-1 (DRP-1)-dependent mitochondrial fission may influence cardiac tolerance to ischemic or oxidative stress, presenting a potential "cardioprotective" target. Effects of dynamin inhibitors [mitochondrial division inhibitor 1 (MDIVI-1) and dynasore] on injury, mitochondrial function, and signaling proteins were assessed in distinct models: ischemia-reperfusion (I-R) in mouse hearts and oxidative stress in rat H9c2 cardiomyoblasts. Hearts exhibited substantial cell death [approx. 40 IU lactate dehydrogenase (LDH) efflux] and dysfunction (approx. 40 mmHg diastolic pressure, approx. 40% contractile recovery) following 25 minutes' ischemia. Pretreatment with 1 µM MDIVI-1 reduced dysfunction (30 mmHg diastolic pressure, approx. 55% recovery) and delayed without reducing overall cell death, whereas 5 µM MDIVI-1 reduced overall death at the same time paradoxically exaggerating dysfunction. Postischemic expression of mitochondrial DRP-1 and phospho-activation of ERK1/2 were reduced by MDIVI-1. Conversely, 1 µM dynasore worsened cell death and reduced nonmitochondrial DRP-1. Postischemic respiratory fluxes were unaltered by MDIVI-1, although a 50% fall in complex-I flux control ratio was reversed. In H9c2 myoblasts stressed with 400 µM H2O2, treatment with 50 µM MDIVI-1 preserved metabolic (MTT assay) and mitochondrial (basal respiration) function without influencing survival. This was associated with differential signaling responses, including reduced early versus increased late phospho-activation of ERK1/2, increased phospho-activation of protein kinase B (AKT), and differential changes in determinants of autophagy [reduced microtubule-associated protein 1 light chain 3b (LC3B-II/I) vs. increased Parkinson juvenile disease protein 2 (Parkin)] and apoptosis [reduced poly-(ADP-ribose) polymerase (PARP) cleavage vs. increased BCL2-associated X (BAX)/B-cell lymphoma 2 (BCL2)]. These data show MDIVI-1 (not dynasore) confers some benefit during I-R/oxidative stress. However, despite mitochondrial and metabolic preservation, MDIVI-1 exerts mixed effects on cell death versus dysfunction, potentially reflecting differential changes in survival kinase, autophagy, and apoptosis pathways. SIGNIFICANCE STATEMENT: Inhibition of mitochondrial fission is a novel approach to still elusive cardioprotection. Assessing effects of fission inhibitors on responses to ischemic or oxidative stress in hearts and cardiomyoblasts reveals mitochondrial division inhibitor 1 (MDIVI-1) and dynasore induce complex effects and limited cardioprotection. This includes differential impacts on death and dysfunction, survival kinases, and determinants of autophagy and apoptosis. Although highlighting the interconnectedness of fission and these key processes, results suggest MDIVI-1 and dynasore may be of limited value in the quest for effective cardioprotection.


Assuntos
Cardiotônicos/farmacologia , Dinaminas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Quinazolinonas/farmacologia , Animais , Apoptose , Autofagia , Cardiotônicos/uso terapêutico , Linhagem Celular , Células Cultivadas , Dinaminas/antagonistas & inibidores , Coração/efeitos dos fármacos , Hidrazonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinonas/uso terapêutico , Ratos
9.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R347-R357, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755463

RESUMO

How low-level psychological stress and overnutrition interact in influencing cardiometabolic disease is unclear. Mechanistic overlaps suggest potential synergies; however, findings are contradictory. We test whether low-level stress and Western diet (WD) feeding synergistically influence homeostasis, mood, and myocardial ischemic tolerance. Male C57BL6/J mice were fed a control diet or WD (32%/57%/11% calories from fat/carbohydrates/protein) for 12 wk, with subgroups restrained for 30 min/day over the final 3 wk. Metabolism, behavior, tolerance of perfused hearts to ischemia-reperfusion (I/R), and cardiac "death proteins" were assessed. The WD resulted in insignificant trends toward increased body weight (+5%), glucose (+40%), insulin (+40%), triglycerides (+15%), and cholesterol (+20%) and reduced leptin (-20%) while significantly reducing insulin sensitivity [100% rise in homeostasis model assessment of insulin resistance (HOMA-IR), P < 0.05]. Restraint did not independently influence metabolism while increasing HOMA-IR a further 50% (and resulting in significant elevations in insulin and glucose to 60-90% above control) in WD mice (P < 0.05), despite blunting weight gain in control and WD mice. Anxiogenesis with restraint or WD was nonadditive, whereas anhedonia (reduced sucrose consumption) only arose with their combination. Neuroinflammation markers (hippocampal TNF-α, Il-1b) were unchanged. Myocardial I/R tolerance was unaltered with stress or WD alone, whereas the combination worsened dysfunction and oncosis [lactate dehydrogenase (LDH) efflux]. Apoptosis (nucleosome accumulation) and death protein expression (BAK, BAX, BCL-2, RIP-1, TNF-α, cleaved caspase-3, and PARP) were unchanged. We conclude that mild, anxiogenic yet cardio-metabolically "benign" stress interacts synergistically with a WD to disrupt homeostasis, promote anhedonia (independently of neuroinflammation), and impair myocardial ischemic tolerance (independently of apoptosis and death protein levels).


Assuntos
Dieta Hiperlipídica , Ingestão de Energia/fisiologia , Homeostase/fisiologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Animais , Coração/fisiopatologia , Resistência à Insulina/fisiologia , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/metabolismo , Obesidade/fisiopatologia
10.
Exp Physiol ; 104(12): 1868-1880, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31535419

RESUMO

NEW FINDINGS: • What is the central question of this study? What is the impact of chronic adult-onset diabetes on cardiac ischaemic outcomes and preconditioning? • What is the main finding and its importance? Chronic adult-onset type 2 but not type 1 diabetes significantly impairs myocardial ischaemic tolerance and ischaemic preconditioning. Preconditioning may be detrimental in type 2 diabetes, exaggerating nitrosative stress and apoptotic protein expression. ABSTRACT: Effects of diabetes on myocardial responses to ischaemia-reperfusion (I-R) and cardioprotective stimuli remain contentious, potentially reflecting influences of disease duration and time of onset. Chronic adult-onset type 1 diabetes (T1D) and type 2 diabetes (T2D) were modelled non-genetically in male C57Bl/6 mice via 5 × 50 mg kg-1 daily streptozotocin (STZ) injections + 12 weeks' standard chow or 1 × 75 mg kg-1 STZ injection + 12 weeks' obesogenic diet (32% calories as fat, 57% carbohydrate, 11% protein), respectively. Systemic outcomes were assessed and myocardial responses to I-R ± ischaemic preconditioning (IPC; 3 × 5 min I-R) determined in Langendorff perfused hearts. Uncontrolled T1D was characterised by pronounced hyperglycaemia (25 mm fasting glucose), glucose intolerance and ∼10% body weight loss, whereas T2D mice exhibited moderate hyperglycaemia (15 mm), hyperinsulinaemia, glucose intolerance and 17% weight gain. Circulating ghrelin, resistin and noradrenaline were unchanged with T1D, while leptin increased and noradrenaline declined in T2D mice. Ischaemic tolerance and IPC were preserved in T1D hearts. In contrast, T2D worsened post-ischaemic function (∼40% greater diastolic and contractile dysfunction) and cell death (100% higher troponin efflux), and abolished IPC protection. Whereas IPC reduced post-ischaemic nitrotyrosine and pro-apoptotic Bak and Bax levels in non-diabetic hearts, these effects were reduced in T1D and IPC augmented Bax and nitrosylation in T2D hearts. The data demonstrate chronic T1D does not inhibit myocardial I-R tolerance or IPC, whereas metabolic and endocrine disruption in T2D is associated with ischaemic intolerance and inhibition of IPC. Indeed, normally protective IPC may exaggerate damage mechanisms in T2D hearts.


Assuntos
Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Precondicionamento Isquêmico Miocárdico/métodos , Isquemia Miocárdica/sangue , Animais , Doença Crônica , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Intolerância à Glucose/sangue , Intolerância à Glucose/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/fisiopatologia
11.
Am J Physiol Heart Circ Physiol ; 315(3): H429-H447, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29600900

RESUMO

Bilirubin, a potentially toxic catabolite of heme and indicator of hepatobiliary insufficiency, exhibits potent cardiac and vascular protective properties. Individuals with Gilbert's syndrome (GS) may experience hyperbilirubinemia in response to stressors including reduced hepatic bilirubin excretion/increased red blood cell breakdown, with individuals usually informed by their clinician that their condition is of little consequence. However, GS appears to protect from all-cause mortality, with progressively elevated total bilirubin associated with protection from ischemic heart and chronic obstructive pulmonary diseases. Bilirubin may protect against these diseases and associated mortality by reducing circulating cholesterol, oxidative lipid/protein modifications, and blood pressure. In addition, bilirubin inhibits platelet activation and protects the heart from ischemia-reperfusion injury. These effects attenuate multiple stages of the atherosclerotic process in addition to protecting the heart during resultant ischemic stress, likely underpinning the profound reduction in cardiovascular mortality in hyperbilirubinemic GS. This review outlines our current knowledge of and uses for bilirubin in clinical medicine and summarizes recent progress in revealing the physiological importance of this poorly understood molecule. We believe that this review will be of significant interest to clinicians, medical researchers, and individuals who have GS.


Assuntos
Bilirrubina/metabolismo , Doenças Cardiovasculares/etiologia , Sistema Cardiovascular/metabolismo , Hiperbilirrubinemia/complicações , Animais , Bilirrubina/sangue , Doenças Cardiovasculares/fisiopatologia , Humanos , Hiperbilirrubinemia/fisiopatologia
12.
Cogn Affect Behav Neurosci ; 18(6): 1121-1144, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30112671

RESUMO

Major depressive disorder (MDD) and obesity are dominant and inter-related health burdens. Obesity is a risk factor for MDD, and there is evidence MDD increases risk of obesity. However, description of a bidirectional relationship between obesity and MDD is misleading, as closer examination reveals distinct unidirectional relationships in MDD subtypes. MDD is frequently associated with weight loss, although obesity promotes MDD. In contrast, MDD with atypical features (MDD-AF) is characterised by subsequent weight gain and obesity. The bases of these distinct associations remain to be detailed, with conflicting findings clouding interpretation. These associations can be viewed within a systems biology framework-the psycho-immune neuroendocrine (PINE) network shared between MDD and metabolic disorders. Shared PINE subsystem perturbations may underlie increased MDD in overweight and obese people (obesity-associated depression), while obesity in MDD-AF (depression-associated obesity) involves more complex interactions between behavioural and biomolecular changes. In the former, the chronic PINE dysfunction triggering MDD is augmented by obesity-dependent dysregulation in shared networks, including inflammatory, leptin-ghrelin, neuroendocrine, and gut microbiome systems, influenced by chronic image-associated psychological stress (particularly in younger or female patients). In MDD-AF, behavioural dysregulation, including hypersensitivity to interpersonal rejection, fundamentally underpins energy imbalance (involving hyperphagia, lethargy, hypersomnia), with evolving obesity exaggerating these drivers via positive feedback (and potentially augmenting PINE disruption). In both settings, sex and age are important determinants of outcome, associated with differences in emotional versus cognitive dysregulation. A systems biology approach is recommended for further research into the pathophysiological networks underlying MDD and linking depression and obesity.


Assuntos
Encéfalo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Trato Gastrointestinal/fisiopatologia , Obesidade/fisiopatologia , Humanos
13.
J Mol Cell Cardiol ; 106: 14-28, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28366738

RESUMO

Ample evidence identifies strong links between major depressive disorder (MDD) and both risk of ischemic or coronary heart disease (CHD) and resultant morbidity and mortality. The molecular mechanistic bases of these linkages are poorly defined. Systemic factors linked to MDD, including vascular dysfunction, atherosclerosis, obesity and diabetes, together with associated behavioral changes, all elevate CHD risk. Nonetheless, experimental evidence indicates the myocardium is also directly modified in depression, independently of these factors, impairing infarct tolerance and cardioprotection. It may be that MDD effectively breaks the heart's intrinsic defense mechanisms. Four extrinsic processes are implicated in this psycho-cardiac coupling, presenting potential targets for therapeutic intervention if causally involved: sympathetic over-activity vs. vagal under-activity, together with hypothalamic-pituitary-adrenal (HPA) axis and immuno-inflammatory dysfunctions. However, direct evidence of their involvement remains limited, and whether targeting these upstream mediators is effective (or practical) in limiting the cardiac consequences of MDD is unknown. Detailing myocardial phenotype in MDD can also inform approaches to cardioprotection, yet cardiac molecular changes are similarly ill defined. Studies support myocardial sensitization to ischemic insult in models of MDD, including worsened oxidative and nitrosative damage, apoptosis (with altered Bcl-2 family expression) and infarction. Moreover, depression may de-sensitize hearts to protective conditioning stimuli. The mechanistic underpinnings of these changes await delineation. Such information not only advances our fundamental understanding of psychological determinants of health, but also better informs management of the cardiac consequences of MDD and implementing cardioprotection in this cohort.


Assuntos
Aterosclerose/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Apoptose/genética , Aterosclerose/complicações , Aterosclerose/psicologia , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/psicologia , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/psicologia , Fatores de Risco
14.
Basic Res Cardiol ; 112(3): 24, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28343262

RESUMO

Caveolae and associated cavin and caveolins may govern myocardial function, together with responses to mechanical and ischaemic stresses. Abnormalities in these proteins are also implicated in different cardiovascular disorders. However, specific roles of the cavin-1 protein in cardiac and coronary responses to mechanical/metabolic perturbation remain unclear. We characterised cardiovascular impacts of cavin-1 deficiency, comparing myocardial and coronary phenotypes and responses to stretch and ischaemia-reperfusion in hearts from cavin-1 +/+ and cavin-1 -/- mice. Caveolae and caveolins 1 and 3 were depleted in cavin-1 -/- hearts. Cardiac ejection properties in situ were modestly reduced in cavin-1 -/- mice. While peak contractile performance in ex vivo myocardium from cavin-1 -/- and cavin-1 +/+ mice was comparable, intrinsic beating rate, diastolic stiffness and Frank-Starling behaviour (stretch-dependent diastolic and systolic forces) were exaggerated in cavin-1 -/- hearts. Increases in stretch-dependent forces were countered by NOS inhibition (100 µM L-NAME), which exposed negative inotropy in cavin-1 -/- hearts, and were mimicked by 100 µM nitroprusside. In contrast, chronotropic differences appeared largely NOS-independent. Cavin-1 deletion also induced NOS-dependent coronary dilatation, ≥3-fold prolongation of reactive hyperaemic responses, and exaggerated pressure-dependence of coronary flow. Stretch-dependent efflux of lactate dehydrogenase and cardiac troponin I was increased and induction of brain natriuretic peptide and c-Fos inhibited in cavin-1 -/- hearts, while ERK1/2 phospho-activation was preserved. Post-ischaemic dysfunction and damage was also exaggerated in cavin-1 -/- hearts. Diverse effects of cavin-1 deletion reveal important roles in both NOS-dependent and -independent control of cardiac and coronary functions, together with governing sarcolemmal fragility and myocardial responses to stretch and ischaemia.


Assuntos
Coração/fisiologia , Proteínas de Membrana/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Western Blotting , Fenômenos Fisiológicos Cardiovasculares , Modelos Animais de Doenças , Preparação de Coração Isolado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/fisiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Óxido Nítrico Sintase/metabolismo , Reação em Cadeia da Polimerase , Estresse Mecânico
15.
Cardiovasc Diabetol ; 16(1): 155, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202762

RESUMO

Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a 'wicked triumvirate': (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia-reperfusion (I-R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Microdomínios da Membrana/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Anticolesterolemiantes/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/prevenção & controle , Dieta/efeitos adversos , Modelos Animais de Doenças , Metabolismo Energético , Exercício Físico , Humanos , Hipoglicemiantes/efeitos adversos , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/patologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Prognóstico , Fatores de Proteção , Fatores de Risco , Sarcolema/metabolismo , Sarcolema/patologia , Transdução de Sinais
16.
Purinergic Signal ; 13(1): 27-49, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27696085

RESUMO

Influences of adenosine 2A receptor (A2AR) activity on the cardiac transcriptome and genesis of endotoxemic myocarditis are unclear. We applied transcriptomic profiling (39 K Affymetrix arrays) to identify A2AR-sensitive molecules, revealed by receptor knockout (KO), in healthy and endotoxemic hearts. Baseline cardiac function was unaltered and only 37 A2AR-sensitive genes modified by A2AR KO (≥1.2-fold change, <5 % FDR); the five most induced are Mtr, Ppbp, Chac1, Ctsk and Cnpy2 and the five most repressed are Hp, Yipf4, Acta1, Cidec and Map3k2. Few canonical paths were impacted, with altered Gnb1, Prkar2b, Pde3b and Map3k2 (among others) implicating modified G protein/cAMP/PKA and cGMP/NOS signalling. Lipopolysaccharide (LPS; 20 mg/kg) challenge for 24 h modified >4100 transcripts in wild-type (WT) myocardium (≥1.5-fold change, FDR < 1 %); the most induced are Lcn2 (+590); Saa3 (+516); Serpina3n (+122); Cxcl9 (+101) and Cxcl1 (+89) and the most repressed are Car3 (-38); Adipoq (-17); Atgrl1/Aplnr (-14); H19 (-11) and Itga8 (-8). Canonical responses centred on inflammation, immunity, cell death and remodelling, with pronounced amplification of toll-like receptor (TLR) and underlying JAK-STAT, NFκB and MAPK pathways, and a 'cardio-depressant' profile encompassing suppressed ß-adrenergic, PKA and Ca2+ signalling, electromechanical and mitochondrial function (and major shifts in transcripts impacting function/injury including Lcn2, S100a8/S100a9, Icam1/Vcam and Nox2 induction, and Adipoq, Igf1 and Aplnr repression). Endotoxemic responses were selectively modified by A2AR KO, supporting inflammatory suppression via A2AR sensitive shifts in regulators of NFκB and JAK-STAT signalling (IκBζ, IκBα, STAT1, CDKN1a and RRAS2) without impacting the cardio-depressant gene profile. Data indicate A2ARs exert minor effects in un-stressed myocardium and selectively suppress NFκB and JAK-STAT signalling and cardiac injury without influencing cardiac depression in endotoxemia.


Assuntos
Endotoxemia/metabolismo , Miocárdio/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Endotoxemia/genética , Perfilação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Janus Quinase 1/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptor A2A de Adenosina/genética , Fatores de Transcrição STAT/metabolismo , Transcriptoma
17.
Am J Physiol Heart Circ Physiol ; 307(8): H1142-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128172

RESUMO

Mildly elevated circulating unconjugated bilirubin (UCB) is associated with protection against hypertension and ischemic heart disease. We assessed whether endogenously elevated bilirubin in Gunn rats modifies cardiovascular function and resistance to ischemic insult. Hearts were assessed ex vivo (Langendorff perfusion) and in vivo (Millar catheterization and echocardiography), and left ventricular myocardial gene expression was measured via quantitative real-time PCR. Ex vivo analysis revealed reduced intrinsic contractility in the Gunn myocardium (+dP/dt: 1,976 ± 622 vs. 2,907 ± 334 mmHg/s, P < 0.01; -dP/dt: -1,435 ± 372 vs. -2,234 ± 478 mmHg/s, P < 0.01), which correlated positively with myocardial UCB concentration (P < 0.05). In vivo analyses showed no changes in left ventricular contractile parameters and ejection (fractional shortening and ejection fraction). However, Gunn rats exhibited reductions in the rate of aortic pressure development (3,008 ± 461 vs. 4,452 ± 644 mmHg/s, P < 0.02), mean aortic velocity (439 ± 64 vs. 644 ± 62 mm/s, P < 0.01), and aortic volume time integral pressure gradient (2.32 ± 0.65 vs. 5.72 ± 0.74 mmHg, P < 0.01), in association with significant aortic dilatation (12-24% increase in aortic diameter, P < 0.05). Ex vivo Gunn hearts exhibited improved ventricular function after 35 min of ischemia and 90 min of reperfusion (63 ± 14 vs. 35 ± 12%, P < 0.01). These effects were accompanied by increased glutathione peroxidase and reduced superoxide dismutase and phospholamban gene expression in Gunn rat myocardium (P < 0.05). These data collectively indicate that hyperbilirubinemia in Gunn rats 1) reduces intrinsic cardiac contractility, which is compensated for in vivo; 2) induces aortic dilatation, which may beneficially influence aortic ejection velocities and pressures; and 3) may improve myocardial stress resistance in association with beneficial transcriptional changes. These effects may contribute to protection from cardiovascular disease with elevated bilirubin.


Assuntos
Aorta/fisiopatologia , Hiperbilirrubinemia/fisiopatologia , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Função Ventricular Esquerda , Animais , Bilirrubina/sangue , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Ratos , Ratos Gunn , Volume Sistólico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Vasodilatação
18.
Am J Physiol Heart Circ Physiol ; 307(6): H895-903, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25063791

RESUMO

Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-ß-cyclodextrin (MßCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02-1.0 mM MßCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MßCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10-30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 µM MßCD, whereas SLP was more robust and only inhibited with ≥200 µM MßCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression.


Assuntos
Cardiotônicos/farmacologia , Caveolina 3/metabolismo , Colesterol/metabolismo , Morfina/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Sarcolema/efeitos dos fármacos , Animais , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Caveolina 3/deficiência , Caveolina 3/genética , Linhagem Celular , Colesterol/deficiência , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Pressão Ventricular/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
19.
Anesthesiology ; 121(3): 538-48, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24821070

RESUMO

BACKGROUND: Caveolae are a nexus for protective signaling. Trafficking of caveolin to mitochondria is essential for adaptation to cellular stress though the trafficking mechanisms remain unknown. The authors hypothesized that G protein-coupled receptor/inhibitory G protein (Gi) activation leads to caveolin trafficking to mitochondria. METHODS: Mice were exposed to isoflurane or oxygen vehicle (30 min, ± 36 h pertussis toxin pretreatment, an irreversible Gi inhibitor). Caveolin trafficking, cardioprotective "survival kinase" signaling, mitochondrial function, and ultrastructure were assessed. RESULTS: Isoflurane increased cardiac caveolae (n = 8 per group; data presented as mean ± SD for Ctrl versus isoflurane; [caveolin-1: 1.78 ± 0.12 vs. 3.53 ± 0.77; P < 0.05]; [caveolin-3: 1.68 ± 0.29 vs. 2.67 ± 0.46; P < 0.05]) and mitochondrial caveolin levels (n = 16 per group; [caveolin-1: 0.87 ± 0.18 vs. 1.89 ± .19; P < 0.05]; [caveolin-3: 1.10 ± 0.29 vs. 2.26 ± 0.28; P < 0.05]), and caveolin-enriched mitochondria exhibited improved respiratory function (n = 4 per group; [state 3/complex I: 10.67 ± 1.54 vs. 37.6 ± 7.34; P < 0.05]; [state 3/complex II: 37.19 ± 4.61 vs. 71.48 ± 15.28; P < 0.05]). Isoflurane increased phosphorylation of survival kinases (n = 8 per group; [protein kinase B: 0.63 ± 0.20 vs. 1.47 ± 0.18; P < 0.05]; [glycogen synthase kinase 3ß: 1.23 ± 0.20 vs. 2.35 ± 0.20; P < 0.05]). The beneficial effects were blocked by pertussis toxin. CONCLUSIONS: Gi proteins are involved in trafficking caveolin to mitochondria to enhance stress resistance. Agents that target Gi activation and caveolin trafficking may be viable cardioprotective agents.


Assuntos
Caveolinas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Mitocôndrias/metabolismo , Animais , Cavéolas/efeitos dos fármacos , Cavéolas/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Isoflurano/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Toxina Pertussis/farmacologia , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
20.
Diabetol Metab Syndr ; 16(1): 133, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886825

RESUMO

BACKGROUND: Elevations in the gut metabolite trimethylamine-N-oxide (TMAO) have been linked to cardiovascular and metabolic diseases. Whether elevated TMAO levels reflect early mechanistic involvement or a sequela of evolving disease awaits elucidation. The purpose of this study was to further explore these potential associations. METHODS: We investigated relationships between circulating levels of TMAO and its pre-cursor substrates, dietary factors, gut microbiome profiles and disease risk in individuals with a Healthy BMI (18.5 < BMI < 25, n = 41) or key precursor states for cardiometabolic disease: Overweight (25 < BMI < 30 kg/m2, n = 33), Obese (BMI > 30, n = 27) and Metabolic Syndrome (MetS; ≥ 3 ATPIII report criteria, n = 39). RESULTS: Unexpectedly, plasma [TMAO] did not vary substantially between groups (means of 3-4 µM; p > 0.05), although carnitine was elevated in participants with MetS. Gut microbial diversity and Firmicutes were also significantly reduced in the MetS group (p < 0.05). Exploratory analysis across diverse parameters reveals significant correlations between circulating [TMAO] and seafood intake (p = 0.007), gut microbial diversity (p = 0.017-0.048), and plasma [trimethylamine] (TMA; p = 0.001). No associations were evident with anthropometric parameters or cardiometabolic disease risk. Most variance in [TMAO] within and between groups remained unexplained. CONCLUSIONS: Data indicate that circulating [TMAO] may be significantly linked to seafood intake, levels of TMA substrate and gut microbial diversity across healthy and early disease phenotypes. However, mean concentrations remain < 5 µM, with little evidence of links between TMAO and cardiometabolic disease risk. These observations suggest circulating TMAO may not participate mechanistically in cardiometabolic disease development, with later elevations likely a detrimental sequela of extant disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA