Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38525127

RESUMO

Basement membranes are sheet-like extracellular matrices containing Collagen IV, and they are conserved across the animal kingdom. Basement membranes usually line the basal surfaces of epithelia, where they contribute to structure, maintenance, and signaling. Although adult epithelia contact basement membranes, in early embryos the epithelia contact basement membranes only after basement membranes are assembled in embryogenesis. In Drosophila , the pupal notum epithelium is a useful model for live imaging epithelial cell behaviors, yet it is unclear when the basement membrane assembles in the pupa, as pupae are undergoing metamorphosis, similar to embryogenesis. To characterize the basement membrane in the pupal notum, we used spinning disk fluorescent microscopy to visualize Collagen IV subunit Vkg-GFP and adherens junction protein p120ctnRFP. Bright punctae of Vkg-GFP were observed in the X-Y plane, possibly representing Vkg-containing cells. We found that a thin continuous Vkg-containing basement membrane was evident at 14 h APF, which became more enriched with Vkg-GFP over the next 6 h, indicating the basement membrane is still assembling during that time. Live imaging of the pupal notum during this time could provide insight into formation, assembly, and repair of the basement membranes.

2.
Sci Adv ; 9(50): eadj1205, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091401

RESUMO

We demonstrate that the Parkinson's VPS35[D620N] mutation alters the expression of ~220 lysosomal proteins and stimulates recruitment and phosphorylation of Rab proteins at the lysosome. This recruits the phospho-Rab effector protein RILPL1 to the lysosome where it binds to the lysosomal integral membrane protein TMEM55B. We identify highly conserved regions of RILPL1 and TMEM55B that interact and design mutations that block binding. In mouse fibroblasts, brain, and lung, we demonstrate that the VPS35[D620N] mutation reduces RILPL1 levels, in a manner reversed by LRRK2 inhibition and proteasome inhibitors. Knockout of RILPL1 enhances phosphorylation of Rab substrates, and knockout of TMEM55B increases RILPL1 levels. The lysosomotropic agent LLOMe also induced LRRK2 kinase-mediated association of RILPL1 to the lysosome, but to a lower extent than the D620N mutation. Our study uncovers a pathway through which dysfunctional lysosomes resulting from the VPS35[D620N] mutation recruit and activate LRRK2 on the lysosomal surface, driving assembly of the RILPL1-TMEM55B complex.


Assuntos
Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Camundongos Knockout , Mutação , Lisossomos/metabolismo , Proteínas de Membrana Lisossomal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA