Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Exp Bot ; 73(12): 3978-3990, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35383838

RESUMO

Change in phenology has been an important component in crop evolution, and selection for earlier flowering through a reduction in environmental sensitivity has helped broaden adaptation in many species. Natural variation for flowering in domesticated pea (Pisum sativum L.) has been noted and studied for decades, but there has been no clear account of change relative to its wild progenitor. Here we examined the genetic control of differences in flowering time between wild P. sativum ssp. humile and a typical late-flowering photoperiodic P. s. sativum accession in a recombinant inbred population under long and short photoperiods. Our results confirm the importance of the major photoperiod sensitivity locus Hr/PsELF3a and identify two other loci on chromosomes 1 (DTF1) and 3 (DTF3) that contribute to earlier flowering in the domesticated line under both photoperiods. The domesticated allele at a fourth locus on chromosome 6 (DTF6) delays flowering under long days only. Map positions, inheritance patterns, and expression analyses in near-isogenic comparisons imply that DTF1, DTF3, and DTF6 represent gain-of-function alleles of the florigen/antiflorigen genes FTa3, FTa1, and TFL1c/LF, respectively. This echoes similar variation in chickpea and lentil, and suggests a conserved route to reduced photoperiod sensitivity and early phenology in temperate pulses.


Assuntos
Flores , Pisum sativum , Ritmo Circadiano , Florígeno/metabolismo , Flores/genética , Pisum sativum/genética , Pisum sativum/metabolismo , Fotoperíodo
2.
J Exp Bot ; 73(12): 3963-3977, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35290451

RESUMO

Modern-day domesticated lentil germplasm is generally considered to form three broad adaptation groups: Mediterranean, South Asian, and northern temperate, which correspond to the major global production environments. Reproductive phenology plays a key role in lentil adaptation to this diverse ecogeographic variation. Here, we dissect the characteristic earliness of the pilosae ecotype, suited to the typically short cropping season of South Asian environments. We identified two loci, DTF6a and DTF6b, at which dominant alleles confer early flowering, and we show that DTF6a alone is sufficient to confer early flowering under extremely short photoperiods. Genomic synteny confirmed the presence of a conserved cluster of three florigen (FT) gene orthologues among potential candidate genes, and expression analysis in near-isogenic material showed that the early allele is associated with a strong derepression of the FTa1 gene in particular. Sequence analysis revealed a 7.4 kb deletion in the FTa1-FTa2 intergenic region in the pilosae parent, and a wide survey of >350 accessions with diverse origin showed that the dtf6a allele is predominant in South Asian material. Collectively, these results contribute to understanding the molecular basis of global adaptation in lentil, and further emphasize the importance of this conserved genomic region for adaptation in temperate legumes generally.


Assuntos
Lens (Planta) , Alelos , Flores , Lens (Planta)/genética , Fenótipo , Fotoperíodo
3.
Cell Mol Life Sci ; 78(6): 2683-2708, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388855

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system provides a groundbreaking genetic technology that allows scientists to modify genes by targeting specific genomic sites. Due to the relative simplicity and versatility of the CRISPR/Cas system, it has been extensively applied in human genetic research as well as in agricultural applications, such as improving crops. Since the gene editing activity of the CRISPR/Cas system largely depends on the efficiency of introducing the system into cells or tissues, an efficient and specific delivery system is critical for applying CRISPR/Cas technology. However, there are still some hurdles remaining for the translatability of CRISPR/Cas system. In this review, we summarized the approaches used for the delivery of the CRISPR/Cas system in mammals, plants, and aquacultures. We further discussed the aspects of delivery that can be improved to elevate the potential for CRISPR/Cas translatability.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Animais , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Imunidade , Lentivirus/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
4.
Plant Physiol ; 182(3): 1375-1386, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31964799

RESUMO

Control of flowering time has been a major focus of comparative genetic analyses in plant development. This study reports on a forward genetic approach to define previously uncharacterized components of flowering control pathways in the long-day legume, pea (Pisum sativum). We isolated two complementation groups of late-flowering mutants in pea that define two uncharacterized loci, LATE BLOOMER3 (LATE3) and LATE4, and describe their diverse effects on vegetative and reproductive development. A map-based comparative approach was employed to identify the underlying genes for both loci, revealing that that LATE3 and LATE4 are orthologs of CYCLIN DEPENDENT KINASE8 (CDK8) and CYCLIN C1 (CYCC1), components of the CDK8 kinase module of the Mediator complex, which is a deeply conserved regulator of transcription in eukaryotes. We confirm the genetic and physical interaction of LATE3 and LATE4 and show that they contribute to the transcriptional regulation of key flowering genes, including the induction of the florigen gene FTa1 and repression of the floral repressor LF Our results establish the conserved importance of the CDK8 module in plants and provide evidence for the function of CYCLIN C1 orthologs in the promotion of flowering and the maintenance of normal reproductive development.


Assuntos
Flores/metabolismo , Complexo Mediador/metabolismo , Pisum sativum/metabolismo , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Exp Bot ; 70(4): 1209-1219, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222352

RESUMO

Common bean (Phaseolus vulgaris L.) is an important grain legume domesticated independently in Mexico and Andean South America approximately 8000 years ago. Wild forms are obligate short-day plants, and relaxation of photoperiod sensitivity was important for expansion to higher latitudes and subsequent global spread. To better understand the nature and origin of this key adaptation, we examined its genetic control in progeny of a wide cross between a wild accession and a photoperiod-insensitive cultivar. We found that photoperiod sensitivity is under oligogenic control, and confirm a major effect of the Ppd locus on chromosome 1. The red/far-red photoreceptor gene PHYTOCHROME A3 (PHYA3) was identified as a strong positional candidate for Ppd, and sequencing revealed distinct deleterious PHYA3 mutations in photoperiod-insensitive Andean and Mesoamerican accessions. These results reveal the independent origins of photoperiod insensitivity within the two major common bean gene pools and demonstrate the conserved importance of PHYA genes in photoperiod adaptation of short-day legume species.


Assuntos
Adaptação Biológica , Domesticação , Phaseolus/fisiologia , Fotoperíodo , Genes de Plantas/genética , Phaseolus/genética , Fitocromo A/genética , Fitocromo A/metabolismo
6.
Plant Cell ; 28(10): 2545-2559, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27670672

RESUMO

The molecular pathways responsible for the flowering response to photoperiod have been extensively studied in Arabidopsis thaliana and cereals but remain poorly understood in other major plant groups. Here, we describe a dominant mutant at the LATE BLOOMER2 (LATE2) locus in pea (Pisum sativum) that is late-flowering with a reduced response to photoperiod. LATE2 acts downstream of light signaling and the circadian clock to control expression of the main photoperiod-regulated FT gene, FTb2, implying that it plays a primary role in photoperiod measurement. Mapping identified the CYCLING DOF FACTOR gene CDFc1 as a strong candidate for LATE2, and the late2-1D mutant was found to carry a missense mutation in CDFc1 that impairs its capacity to bind to the blue-light photoreceptor FKF1 in yeast two-hybrid assays and delays flowering in Arabidopsis when overexpressed. Arabidopsis CDF genes are important negative regulators of CONSTANS (CO) transcription, but we found no effect of LATE2 on the transcription of pea CO-LIKE genes, nor on genes in any other families previously implicated in the activation of FT in Arabidopsis. Our results reveal an important component of the pea photoperiod response pathway and support the view that regulation of FTb2 expression by photoperiod occurs via a CO-independent mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Pisum sativum/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Pisum sativum/genética , Fotoperíodo
7.
Plant Physiol ; 173(4): 2253-2264, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28202598

RESUMO

Three pea (Pisum sativum) loci controlling photoperiod sensitivity, HIGH RESPONSE (HR), DIE NEUTRALIS (DNE), and STERILE NODES (SN), have recently been shown to correspond to orthologs of Arabidopsis (Arabidopsis thaliana) circadian clock genes EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO, respectively. A fourth pea locus, PHOTOPERIOD (PPD), also contributes to the photoperiod response in a similar manner to SN and DNE, and recessive ppd mutants on a spring-flowering hr mutant background show early, photoperiod-insensitive flowering. However, the molecular identity of PPD has so far remained elusive. Here, we show that the PPD locus also has a role in maintenance of diurnal and circadian gene expression rhythms and identify PPD as an ELF3 co-ortholog, termed ELF3b Genetic interactions between pea ELF3 genes suggest that loss of PPD function does not affect flowering time in the presence of functional HR, whereas PPD can compensate only partially for the lack of HR These results provide an illustration of how gene duplication and divergence can generate potential for the emergence of more subtle variations in phenotype that may be adaptively significant.


Assuntos
Flores/genética , Fotoperíodo , Pisum sativum/genética , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Ligação a DNA/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Mutação , Fenótipo , Estações do Ano , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Fatores de Transcrição/genética
8.
Plant Cell ; 27(4): 1046-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25804541

RESUMO

As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species.


Assuntos
Flores/metabolismo , Inflorescência/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Inflorescência/genética , Pisum sativum/genética , Proteínas de Plantas/genética
9.
Plant Physiol ; 169(1): 115-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25792252

RESUMO

Plant responses to light involve a complex network of interactions among multiple plant hormones. In a screen for mutants showing altered photomorphogenesis under red light, we identified a mutant with dramatically enhanced leaf expansion and delayed petal senescence. We show that this mutant exhibits reduced sensitivity to ethylene and carries a nonsense mutation in the single pea (Pisum sativum) ortholog of the ethylene signaling gene ETHYLENE INSENSITIVE2 (EIN2). Consistent with this observation, the ein2 mutation rescues the previously described effects of ethylene overproduction in mature phytochrome-deficient plants. In seedlings, ein2 confers a marked increase in leaf expansion under monochromatic red, far-red, or blue light, and interaction with phytochromeA, phytochromeB, and long1 mutants confirms that ein2 enhances both phytochrome- and cryptochrome-dependent responses in a LONG1-dependent manner. In contrast, minimal effects of ein2 on seedling development in darkness or high-irradiance white light show that ethylene is not limiting for development under these conditions. These results indicate that ethylene signaling constrains leaf expansion during deetiolation in pea and provide further evidence that down-regulation of ethylene production may be an important component mechanism in the broader control of photomorphogenic development by phytochrome and cryptochrome.


Assuntos
Etilenos/metabolismo , Fitocromo/metabolismo , Pisum sativum/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Criptocromos/metabolismo , Escuridão , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Luz , Dados de Sequência Molecular , Mutação , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos da radiação , Transdução de Sinais
10.
EMBO J ; 30(6): 1173-83, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21326210

RESUMO

Programmed cell death (PCD) has a key role in defence and development of all multicellular organisms. In plants, there is a large gap in our knowledge of the molecular machinery involved at the various stages of PCD, especially the early steps. Here, we identify kiss of death (KOD) encoding a 25-amino-acid peptide that activates a PCD pathway in Arabidopsis thaliana. Two mutant alleles of KOD exhibited a reduced PCD of the suspensor, a single file of cells that support embryo development, and a reduced PCD of root hairs after a 55°C heat shock. KOD expression was found to be inducible by biotic and abiotic stresses. Furthermore, KOD expression was sufficient to cause death in leaves or seedlings and to activate caspase-like activities. In addition, KOD-induced PCD required light in leaves and was repressed by the PCD-suppressor genes AtBax inhibitor 1 and p35. KOD expression resulted in depolarization of the mitochondrial membrane, placing KOD above mitochondria dysfunction, an early step in plant PCD. A KOD∷GFP fusion, however, localized in the cytosol of cells and not mitochondria.


Assuntos
Apoptose , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Proteínas de Arabidopsis/genética , Temperatura Alta , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/fisiologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Peptídeos/genética , Folhas de Planta/metabolismo , Plântula/metabolismo
11.
Plant Physiol ; 165(2): 648-657, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24706549

RESUMO

The STERILE NODES (SN) locus in pea (Pisum sativum) was one of the first photoperiod response genes to be described and provided early evidence for the genetic control of long-distance signaling in flowering-time regulation. Lines homozygous for recessive sn mutations are early flowering and photoperiod insensitive, with an increased ability to promote flowering across a graft union in short-day conditions. Here, we show that SN controls developmental regulation of genes in the FT family and rhythmic regulation of genes related to circadian clock function. Using a positional and functional candidate approach, we identify SN as the pea ortholog of LUX ARRHYTHMO, a GARP transcription factor from Arabidopsis (Arabidopsis thaliana) with an important role in circadian clock function. In addition to induced mutants, sequence analysis demonstrates the presence of at least three other independent, naturally occurring loss-of-function mutations among known sn cultivars. Examination of genetic and regulatory interactions between SN and two other circadian clock genes, HIGH RESPONSE TO PHOTOPERIOD (HR) and DIE NEUTRALIS (DNE), suggests a complex relationship in which HR regulates expression of SN and the role of DNE and HR in control of flowering is dependent on SN. These results extend previous work to show that pea orthologs of all three Arabidopsis evening complex genes regulate clock function and photoperiod-responsive flowering and suggest that the function of these genes may be widely conserved.

12.
J Exp Bot ; 66(1): 125-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355864

RESUMO

In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F2 population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time.


Assuntos
Brassica/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(51): 21158-63, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213200

RESUMO

Legumes were among the first plant species to be domesticated, and accompanied cereals in expansion of agriculture from the Fertile Crescent into diverse environments across the Mediterranean basin, Europe, Central Asia, and the Indian subcontinent. Although several recent studies have outlined the molecular basis for domestication and eco-geographic adaptation in the two main cereals from this region, wheat and barley, similar questions remain largely unexplored in their legume counterparts. Here we identify two major loci controlling differences in photoperiod response between wild and domesticated pea, and show that one of these, high response to photoperiod (HR), is an ortholog of early flowering 3 (ELF3), a gene involved in circadian clock function. We found that a significant proportion of flowering time variation in global pea germplasm is controlled by HR, with a single, widespread functional variant conferring altered circadian rhythms and the reduced photoperiod response associated with the spring habit. We also present evidence that ELF3 has a similar role in lentil, another major legume crop, with a distinct functional variant contributing to reduced photoperiod response in cultivars widely deployed in short-season environments. Our results identify the factor likely to have permitted the successful prehistoric expansion of legume cultivation to Northern Europe, and define a conserved genetic basis for major adaptive changes in flowering phenology and growth habit in an important crop group.


Assuntos
Fabaceae/fisiologia , Lens (Planta)/metabolismo , Fotoperíodo , Pisum sativum/metabolismo , Aclimatação/genética , Adaptação Fisiológica/genética , Relógios Circadianos , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Modelos Genéticos , Dados de Sequência Molecular , Pisum sativum/genética , Fenótipo , Estações do Ano
14.
Plant Cell ; 23(1): 147-61, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21282524

RESUMO

Garden pea (Pisum sativum) was prominent in early studies investigating the genetic control of flowering and the role of mobile flowering signals. In view of recent evidence that genes in the FLOWERING LOCUS T (FT) family play an important role in generating mobile flowering signals, we isolated the FT gene family in pea and examined the regulation and function of its members. Comparison with Medicago truncatula and soybean (Glycine max) provides evidence of three ancient subclades (FTa, FTb, and FTc) likely to be common to most crop and model legumes. Pea FT genes show distinctly different expression patterns with respect to developmental timing, tissue specificity, and response to photoperiod and differ in their activity in transgenic Arabidopsis thaliana, suggesting they may have different functions. We show that the pea FTa1 gene corresponds to the GIGAS locus, which is essential for flowering under long-day conditions and promotes flowering under short-day conditions but is not required for photoperiod responsiveness. Grafting, expression, and double mutant analyses show that GIGAS/FTa1 regulates a mobile flowering stimulus but also provide clear evidence for a second mobile flowering stimulus that is correlated with expression of FTb2 in leaf tissue. These results suggest that induction of flowering by photoperiod in pea results from interactions among several members of a diversified FT family.


Assuntos
Flores/crescimento & desenvolvimento , Fotoperíodo , Pisum sativum/genética , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Medicago/genética , Família Multigênica , Mutação , Pisum sativum/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Glycine max/genética
15.
Front Plant Sci ; 15: 1359226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476691

RESUMO

Introduction: The seeds of wild pea (Pisum) exhibit marked physical dormancy due to impermeability of the seed coat to water, and the loss of this dormancy is thought to have been critical for domestication. Wild pea seed coats are also notably thick and rough, traits that have also reduced during domestication and are anecdotally linked to increased permeability. However, how these traits specifically interact with permeability is unclear. Methods: To investigate this, we examined the genetic control of differences in seed coat characteristics between wild P. sativum ssp. humile and a non-dormant domesticated P. s. sativum accession in a recombinant inbred population. QTL effects were confirmed and their locations refined in segregating F4/5 populations. Results: In this population we found a moderate correlation between testa thickness and permeability, and identified loci that affect them independently, suggesting no close functional association. However, the major loci affecting both testa thickness and permeability collocated closely with Mendel's pigmentation locus A, suggesting flavonoid compounds under its control might contribute significantly to both traits. We also show that seed coat roughness is oligogenic in this population, with the major locus independent of both testa thickness and permeability, suggesting selection for smooth seed was unlikely to be due to effects on either of these traits. Discussion: Results indicate loss of seed coat dormancy during domestication was not primarily driven by reduced testa thickness or smooth seededness. The close association between major permeability and thickness QTL and Mendel's 'A' warrant further study, particularly regarding the role of flavonoids.

16.
Plant Physiol ; 156(4): 2207-24, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21685176

RESUMO

FLOWERING LOCUS T (FT) genes encode proteins that function as the mobile floral signal, florigen. In this study, we characterized five FT-like genes from the model legume, Medicago (Medicago truncatula). The different FT genes showed distinct patterns of expression and responses to environmental cues. Three of the FT genes (MtFTa1, MtFTb1, and MtFTc) were able to complement the Arabidopsis (Arabidopsis thaliana) ft-1 mutant, suggesting that they are capable of functioning as florigen. MtFTa1 is the only one of the FT genes that is up-regulated by both long days (LDs) and vernalization, conditions that promote Medicago flowering, and transgenic Medicago plants overexpressing the MtFTa1 gene flowered very rapidly. The key role MtFTa1 plays in regulating flowering was demonstrated by the identification of fta1 mutants that flowered significantly later in all conditions examined. fta1 mutants do not respond to vernalization but are still responsive to LDs, indicating that the induction of flowering by prolonged cold acts solely through MtFTa1, whereas photoperiodic induction of flowering involves other genes, possibly MtFTb1, which is only expressed in leaves under LD conditions and therefore might contribute to the photoperiodic regulation of flowering. The role of the MtFTc gene is unclear, as the ftc mutants did not have any obvious flowering-time or other phenotypes. Overall, this work reveals the diversity of the regulation and function of the Medicago FT family.


Assuntos
Flores/fisiologia , Medicago/fisiologia , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Temperatura Baixa , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Teste de Complementação Genética , Medicago/genética , Medicago/crescimento & desenvolvimento , Meristema/genética , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Fotoperíodo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Tempo , Regulação para Cima/genética
17.
Plant Cell ; 21(10): 3198-211, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19843842

RESUMO

The DIE NEUTRALIS (DNE) locus in garden pea (Pisum sativum) was previously shown to inhibit flowering under noninductive short-day conditions and to affect a graft-transmissible flowering signal. In this study, we establish that DNE has a role in diurnal and/or circadian regulation of several clock genes, including the pea GIGANTEA (GI) ortholog LATE BLOOMER 1 (LATE1) and orthologs of the Arabidopsis thaliana genes LATE ELONGATED HYPOCOTYL and TIMING OF CHLOROPHYLL A/B BINDING PROTEIN EXPRESSION 1. We also confirm that LATE1 participates in the clock and provide evidence that DNE is the ortholog of Arabidopsis EARLY FLOWERING4 (ELF4). Circadian rhythms of clock gene expression in wild-type plants under constant light were weaker in pea than in Arabidopsis, and a number of differences were also seen in the effects of both DNE/ELF4 and LATE1/GI on clock gene expression. Grafting studies suggest that DNE controls flowering at least in part through a LATE1-dependent mobile stimulus, and dne mutants show elevated expression of a FLOWERING LOCUS T homolog under short-day conditions. However, the early flowering of the dne mutant is not associated with altered expression of a previously described CONSTANS-like gene. Collectively, our results characterize the clock system and reveal its importance for photoperiod responsiveness in a model legume.


Assuntos
Proteínas de Arabidopsis/fisiologia , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Proteínas de Plantas/fisiologia , Proteínas de Arabidopsis/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , Pisum sativum/genética , Fotoperíodo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia
18.
Front Plant Sci ; 13: 765095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212341

RESUMO

Inflorescence architecture contributes to essential plant traits. It determines plant shape, contributing to morphological diversity, and also determines the position and number of flowers and fruits produced by the plant, thus influencing seed yield. Most legumes have compound inflorescences, where flowers are produced in secondary inflorescences (I2), formed at the flanks of the main primary inflorescence (I1), in contrast to simple inflorescences of plants like Arabidopsis, in which flowers are directly formed on the I1. The pea VEGETATIVE1/FULc (VEG1) gene, and its homologs in other legumes, specify the formation of the I2 meristem, a function apparently restricted to legumes. To understand the control of I2 development, it is important to identify the genes working downstream of VEG1. In this study, we adopted a novel strategy to identify genes expressed in the I2 meristem, as potential regulatory targets of VEG1. To identify pea I2-meristem genes, we compared the transcriptomes of inflorescence apices from wild-type and mutants affected in I2 development, such as proliferating inflorescence meristems (pim, with more I2 meristems), and veg1 and vegetative2 (both without I2 meristems). Analysis of the differentially expressed genes using Arabidopsis genome databases combined with RT-qPCR expression analysis in pea allowed the selection of genes expressed in the pea inflorescence apex. In situ hybridization of four of these genes showed that all four genes are expressed in the I2 meristem, proving our approach to identify I2-meristem genes was successful. Finally, analysis by VIGS (virus-induced gene silencing) in pea identified one gene, PsDAO1, whose silencing leads to small plants, and another gene, PsHUP54, whose silencing leads to plants with very large stubs, meaning that this gene controls the activity of the I2 meristem. PsHUP54-VIGS plants are also large and, more importantly, produce large pods with almost double the seeds as the control. Our study shows a new useful strategy to isolate I2-meristem genes and identifies a novel gene, PsHUP54, which seems to be a promising tool to improve yield in pea and in other legumes.

20.
J Exp Bot ; 60(9): 2493-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19414500

RESUMO

The garden pea has been a model for the genetics of flowering for several decades and numerous flowering loci have been identified, but until recently little was known about the molecular nature of these loci. This paper presents an update on recent work on the molecular genetics of flowering in pea, outlining progress in gene and mutant isolation, expression analyses, grafting and other physiological studies, and candidate gene assessment. Work so far has led to the identification of the LATE1 and DNE loci as orthologues of Arabidopsis GIGANTEA and ELF4, respectively, and candidate genes for several other loci are being evaluated. Expression analysis of an expanded FT-like gene family suggests a more complex role for this group of genes. These results provide the first insight into the circadian clock, photoperiod response mechanism, and mobile signals in pea, and identify both conserved and divergent features in comparison with Arabidopsis.


Assuntos
Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Pisum sativum/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Flores/genética , Mutação , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA