RESUMO
Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.
Assuntos
Biodiversidade , Micorrizas , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Especificidade da EspécieRESUMO
Biodiversity enhances many of nature's benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth's history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation.
Assuntos
Biodiversidade , Atividades Humanas , Animais , Conservação dos Recursos Naturais , Política Ambiental , Extinção Biológica , Análise Espaço-Temporal , Especificidade da EspécieRESUMO
The role of conspecific density dependence (CDD) in the maintenance of species richness is a central focus of tropical forest ecology. However, tests of CDD often ignore the integrated effects of CDD over multiple life stages and their long-term impacts on population demography. We combined a 10-year time series of seed production, seedling recruitment and sapling and tree demography of three dominant Southeast Asian tree species that adopt a mast-fruiting phenology. We used these data to construct individual-based models that examine the effects of CDD on population growth rates (λ) across life-history stages. Recruitment was driven by positive CDD for all species, supporting the predator satiation hypothesis, while negative CDD affected seedling and sapling growth of two species, significantly reducing λ. This negative CDD on juvenile growth overshadowed the positive CDD of recruitment, suggesting the cumulative effects of CDD during seedling and sapling development has greater importance than the positive CDD during infrequent masting events. Overall, CDD varied among positive, neutral and negative effects across life-history stages for all species, suggesting that assessments of CDD on transitions between just two stages (e.g. seeds seedlings or juveniles mature trees) probably misrepresent the importance of CDD on population growth and stability.
Assuntos
Florestas , Árvores , Demografia , Plântula , Sementes , Clima TropicalRESUMO
How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.
Assuntos
Biodiversidade , Pradaria , Modelos Biológicos , Plantas/classificação , Plantas/metabolismo , Comportamento Competitivo , GeografiaRESUMO
It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.
Assuntos
Biodiversidade , Clima , Ecossistema , Fenômenos Fisiológicos Vegetais , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais , Desastres/estatística & dados numéricos , Secas , Pradaria , Atividades HumanasRESUMO
Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity-stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.
Assuntos
Biodiversidade , Eutrofização , Fertilizantes/efeitos adversos , Poaceae , Animais , Biomassa , Clima , Eutrofização/efeitos dos fármacos , Geografia , Cooperação Internacional , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Fatores de TempoRESUMO
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Assuntos
Biodiversidade , Eutrofização/efeitos da radiação , Herbivoria/fisiologia , Luz , Plantas/metabolismo , Plantas/efeitos da radiação , Poaceae , Clima , Eutrofização/efeitos dos fármacos , Geografia , Atividades Humanas , Internacionalidade , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Plantas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Poaceae/efeitos da radiação , Fatores de TempoAssuntos
Biodiversidade , Plantas/classificação , Solo , Plantas/microbiologia , Microbiologia do SoloRESUMO
Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (ß-diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long-term (18-year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments.
Assuntos
Biodiversidade , Ecossistema , PlantasRESUMO
Biodiversity is rapidly declining worldwide, and there is consensus that this can decrease ecosystem functioning and services. It remains unclear, though, whether few or many of the species in an ecosystem are needed to sustain the provisioning of ecosystem services. It has been hypothesized that most species would promote ecosystem services if many times, places, functions and environmental changes were considered; however, no previous study has considered all of these factors together. Here we show that 84% of the 147 grassland plant species studied in 17 biodiversity experiments promoted ecosystem functioning at least once. Different species promoted ecosystem functioning during different years, at different places, for different functions and under different environmental change scenarios. Furthermore, the species needed to provide one function during multiple years were not the same as those needed to provide multiple functions within one year. Our results indicate that even more species will be needed to maintain ecosystem functioning and services than previously suggested by studies that have either (1) considered only the number of species needed to promote one function under one set of environmental conditions, or (2) separately considered the importance of biodiversity for providing ecosystem functioning across multiple years, places, functions or environmental change scenarios. Therefore, although species may appear functionally redundant when one function is considered under one set of environmental conditions, many species are needed to maintain multiple functions at multiple times and places in a changing world.
Assuntos
Biodiversidade , Ecossistema , Fenômenos Fisiológicos Vegetais , Plantas , Ecologia/métodos , Extinção Biológica , Modelos Biológicos , Desenvolvimento Vegetal , Plantas/classificação , Poaceae , Especificidade da EspécieRESUMO
Biodiversity experiments have generated robust empirical results supporting the hypothesis that ecosystems function better when they contain more species. Given that ecosystems provide services that are valued by humans, this inevitably suggests that the loss of species from natural ecosystems could diminish their value. This raises two important questions. First, will experimental results translate into the real world, where species are being lost at an alarming rate? And second, what are the benefits and pitfalls of such valuation exercises? We argue that the empirical results obtained in experiments are entirely consistent with well-established theories of species coexistence. We then examine the current body of work through the lens of niche theory and highlight where closer links with theory could open up opportunities for future research. We argue that niche theory predicts that diversity-functioning relationships are likely to be stronger (and require more species) in the field than in simplified experimental settings. However, we caution that while many of the biological processes that promote coexistence can also generate diversity-function relationships, there is no simple mapping between the two. This implies that valuation exercises need to proceed with care.
Assuntos
Biodiversidade , Ecologia , Plantas/classificação , EcossistemaRESUMO
One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the 'insurance hypothesis' predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning.
Assuntos
Biodiversidade , Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical , Malásia , Plântula/crescimento & desenvolvimentoRESUMO
Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.
Assuntos
Biodiversidade , Florestas , Árvores/crescimento & desenvolvimento , Animais , Besouros , Ecossistema , Solo , Árvores/classificaçãoRESUMO
Drought regimes can be characterized by the variability in the quantity of rainfall and the duration of rainless periods. However, most research on plant response to drought has ignored the impacts of rainfall variation, especially with regard to the influence of nonstructural carbohydrates (NSCs) in promoting drought resistance. To test the hypothesis that these components of drought differentially affect NSC dynamics and seedling resistance, we tracked NSC in plant tissues of tropical tree seedlings in response to manipulations of the volume and frequency of water applied. NSC concentrations decreased in woody tissues under infrequent-high watering but increased under no watering. A faster decline of growth relative to stomatal conductance in the no watering treatment was consistent with NSC accumulation as a result of an uncoupling of growth and photosynthesis, while usage of stored NSCs in woody tissues to maintain function may account for the NSC decline under infrequent-high watering. NSCs, and specifically stem NSCs, contributed to drought resistance under severe water deficits, while NSCs had a less clear role in drought resistance to variability in water availability. The contrasting response of NSCs to water variability and deficit indicates that unique processes support seedling resistance to these components of drought.
Assuntos
Adaptação Fisiológica , Metabolismo dos Carboidratos , Secas , Caules de Planta/metabolismo , Estresse Fisiológico , Árvores/metabolismo , Água , Fotossíntese , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Chuva , Plântula/metabolismo , Árvores/crescimento & desenvolvimento , MadeiraRESUMO
Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.
Assuntos
Biodiversidade , Ecossistema , Plantas , Biomassa , Florestas , PradariaRESUMO
General principles from coexistence theory are often invoked to explain how and why mixtures of species outperform monocultures. However, the complementarity and selection effects commonly measured in biodiversity experiments do not precisely quantify the niche and relative fitness differences that govern species coexistence. Given this lack of direct correspondence, how can we know whether species-rich mixtures are stable and that the benefits of diversity will therefore persist? We develop a resource-based included-niche model in which plant species have asymmetric access to a nested set of belowground resource pools. We use the model to show that positive complementarity effects arise from stabilising niche differences, but do not necessarily lead to stable coexistence and hence can be transient. In addition, these transient complementarity effects occur in the model when there is no complementary resource use among species. Including a trade-off between uptake rates and the size of the resource pool stabilised interactions and led to persistent complementarity coupled with weak or negative selection effects, consistent with results from the longest-running field biodiversity experiments. We suggest that future progress requires a greater mechanistic understanding of the links between ecosystem functions and their underlying biological processes.
Assuntos
Biodiversidade , Ecossistema , Plantas , Modelos Biológicos , Modelos Teóricos , Nitrogênio/farmacocinética , Desenvolvimento Vegetal , Plantas/metabolismo , Estações do Ano , SoloRESUMO
Biodiversity loss can affect ecosystem functions and services. Individual ecosystem functions generally show a positive asymptotic relationship with increasing biodiversity, suggesting that some species are redundant. However, ecosystems are managed and conserved for multiple functions, which may require greater biodiversity. Here we present an analysis of published data from grassland biodiversity experiments, and show that ecosystem multifunctionality does require greater numbers of species. We analysed each ecosystem function alone to identify species with desirable effects. We then calculated the number of species with positive effects for all possible combinations of functions. Our results show appreciable differences in the sets of species influencing different ecosystem functions, with average proportional overlap of about 0.2 to 0.5. Consequently, as more ecosystem processes were included in our analysis, more species were found to affect overall functioning. Specifically, for all of the analysed experiments, there was a positive saturating relationship between the number of ecosystem processes considered and the number of species influencing overall functioning. We conclude that because different species often influence different functions, studies focusing on individual processes in isolation will underestimate levels of biodiversity required to maintain multifunctional ecosystems.
Assuntos
Biodiversidade , Ecossistema , Biomassa , Conservação dos Recursos Naturais , Ecologia , Europa (Continente) , Plantas/classificação , Análise de RegressãoRESUMO
Experiments under controlled conditions have established that ecosystem functioning is generally positively related to levels of biodiversity, but it is unclear how widespread these effects are in real-world settings and whether they can be harnessed for ecosystem restoration. We used remote-sensing data from the first decade of a long-term, field-scale tropical restoration experiment initiated in 2002 to test how the diversity of planted trees affected recovery of a 500-ha area of selectively logged forest measured using multiple sources of satellite data. Replanting using species-rich mixtures of tree seedlings with higher phylogenetic and functional diversity accelerated restoration of remotely sensed estimates of aboveground biomass, canopy cover, and leaf area index. Our results are consistent with a positive relationship between biodiversity and ecosystem functioning in the lowland dipterocarp rainforests of SE Asia and demonstrate that using diverse mixtures of species can enhance their initial recovery after logging.
Assuntos
Ecossistema , Florestas , Filogenia , Floresta Úmida , ÁsiaRESUMO
Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Assuntos
Ecossistema , Clima Tropical , Biodiversidade , Plantas , ÁsiaRESUMO
Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity-ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low-diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems.