Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Gene Med ; 26(1): e3642, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043928

RESUMO

Gene therapies have the potential to target and effectively treat a variety of diseases including cancer as well as genetic, neurological, and autoimmune disorders. Although we have made significant advances in identifying non-viral strategies to deliver genetic cargo, certain limitations remain. In general, gene delivery is challenging for several reasons including the instabilities of nucleic acids to enzymatic and chemical degradation and the presence of restrictive biological barriers such as cell, endosomal and nuclear membranes. The emergence of lipid nanoparticles (LNPs) helped overcome many of these challenges. Despite its success, further optimization is required for LNPs to yield efficient gene delivery to extrahepatic tissues, as LNPs favor accumulation in the liver after systemic administration. In this mini-review, we provide an overview of current preclinical approaches in that LNP surface modification was leveraged for cell and tissue targeting by conjugating aptamers, antibodies, and peptides among others. In addition to their cell uptake and efficiency-enhancing effects, we outline the (dis-)advantages of the different targeting moieties and commonly used conjugation strategies.


Assuntos
Lipídeos , Nanopartículas , Lipossomos , Terapia Genética , RNA Interferente Pequeno/genética
2.
Mol Pharm ; 19(6): 1795-1802, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266720

RESUMO

Human skin equivalents emerged as novel tools in preclinical dermatological research. It is being claimed that they may bridge the translational gap between preclinical and clinical research, yet only a few studies have investigated their suitability for preclinical drug testing so far. Therefore, we investigated if inflammatory skin equivalents, which emulate hallmarks of atopic dermatitis (AD), are suitable to assess the anti-inflammatory effects of dexamethasone (DXM) in a cream formulation or loaded onto dendritic core-multishell nanoparticles. Topical DXM application resulted in significantly decreased expression of the proinflammatory cytokine TSLP, increased expression of the skin barrier protein involucrin, and facilitated glucocorticoid receptor translocation in a dose-dependent manner. Further, DXM treatment inhibited gene expression of extracellular matrix components, potentially indicative of the known skin atrophy-inducing side effects of glucocorticoids. Overall, we were able to successfully assess the anti-inflammatory effects of DXM and the superiority of the nanoparticle formulation. Nevertheless the identification of robust readout parameters proved challenging and requires careful study design.


Assuntos
Anti-Inflamatórios , Nanopartículas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Humanos , Pele/metabolismo , Absorção Cutânea
3.
Biomacromolecules ; 23(1): 112-127, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34874701

RESUMO

Polymeric nanogels are promising nonirritating nanocarriers for topical delivery applications. However, conventional hydrophilic networks limit encapsulation of hydrophobic therapeutics and hinder tailored interactions with the amphiphilic skin barrier. To address these limitations, we present amphiphilic nanogels containing hydrophilic networks with hydrophobic domains. Two competing factors determine favorable nanogel-skin interactions and need to be balanced through network composition: suitable surface hydrophobicity and low network rigidity (through physical hydrophobic cross-links). To ensure comparability in such investigations, we prepared a library of nanogels with increasing hydrophobic cholesteryl amounts but similar colloidal features. By combining mechanical and surface hydrophobicity tests (atomic force microscopy (AFM)) with dermal delivery experiments on excised human skin, we can correlate an increased delivery efficacy of Nile red to the viable epidermis with a specific network composition, i.e., 20-30 mol % cholesterol. Thus, our nanogel library identifies a specific balance between surface amphiphilicity and network rigidity to guide developments of advanced dermal delivery vehicles.


Assuntos
Polietilenoglicóis , Polietilenoimina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanogéis , Polietilenoglicóis/química
4.
Pflugers Arch ; 473(12): 1859-1884, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34664138

RESUMO

Mutations of TRPV3 lead to severe dermal hyperkeratosis in Olmsted syndrome, but whether the mutants are trafficked to the cell membrane or not is controversial. Even less is known about TRPV3 function in intestinal epithelia, although research on ruminants and pigs suggests an involvement in the uptake of NH4+. It was the purpose of this study to measure the permeability of the human homologue (hTRPV3) to NH4+, to localize hTRPV3 in human skin equivalents, and to investigate trafficking of the Olmsted mutant G573S. Immunoblotting and immunostaining verified the successful expression of hTRPV3 in HEK-293 cells and Xenopus oocytes with trafficking to the cell membrane. Human skin equivalents showed distinct staining of the apical membrane of the top layer of keratinocytes with cytosolic staining in the middle layers. Experiments with pH-sensitive microelectrodes on Xenopus oocytes demonstrated that acidification by NH4+ was significantly greater when hTRPV3 was expressed. Single-channel measurements showed larger conductances in overexpressing Xenopus oocytes than in controls. In whole-cell experiments on HEK-293 cells, both enantiomers of menthol stimulated influx of NH4+ in hTRPV3 expressing cells, but not in controls. Expression of the mutant G573S greatly reduced cell viability with partial rescue via ruthenium red. Immunofluorescence confirmed cytosolic expression, with membrane staining observed in a very small number of cells. We suggest that expression of TRPV3 by epithelia may have implications not just for Ca2+ signalling, but also for nitrogen metabolism. Models suggesting how influx of NH4+ via TRPV3 might stimulate skin cornification or intestinal NH4+ transport are discussed.


Assuntos
Amônia/metabolismo , Transporte Biológico/fisiologia , Sinalização do Cálcio/fisiologia , Canais de Cátion TRPV/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Epitélio/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Queratinócitos/metabolismo , Mutação/fisiologia , Oócitos/metabolismo , Técnicas de Patch-Clamp/métodos , Xenopus laevis/metabolismo
5.
Small ; 17(23): e2007963, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33719187

RESUMO

Mucosal surfaces pose a challenging environment for efficient drug delivery. Various delivery strategies such as nanoparticles have been employed so far; yet, still yielding limited success. To address the need of efficient transmucosal drug delivery, this report presents the synthesis of novel disulfide-containing dendritic polyglycerol (dPG)-based nanogels and their preclinical testing. A bifunctional disulfide-containing linker is coupled to dPG to act as a macromolecular crosslinker for poly-N-isopropylacrylamide (PNIPAM) and poly-N-isopropylmethacrylamide (PNIPMAM) in a precipitation polymerization process. A systematic analysis of the polymerization reveals the importance of a careful polymer choice to yield mucus-degradable nanogels with diameters between 100 and 200 nm, low polydispersity, and intact disulfide linkers. Absorption studies in porcine intestinal tissue and human bronchial epithelial models demonstrate that disulfide-containing nanogels are highly efficient in overcoming mucosal barriers. The nanogels efficiently degrade and deliver the anti-inflammatory biomacromolecule etanercept into epithelial tissues yielding local anti-inflammatory effects. Over the course of this work, several problems are encountered due to a limited availability of valid test systems for mucosal drug-delivery systems. Hence, this study also emphasizes how critical a combined and multifaceted approach is for the preclinical testing of mucosal drug-delivery systems, discusses potential pitfalls, and provides suggestions for solutions.


Assuntos
Portadores de Fármacos , Nanopartículas , Animais , Sistemas de Liberação de Medicamentos , Humanos , Muco , Nanogéis , Polimerização , Suínos
6.
Proc Natl Acad Sci U S A ; 114(14): 3631-3636, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320932

RESUMO

Based on experimental concentration depth profiles of the antiinflammatory drug dexamethasone in human skin, we model the time-dependent drug penetration by the 1D general diffusion equation that accounts for spatial variations in the diffusivity and free energy. For this, we numerically invert the diffusion equation and thereby obtain the diffusivity and the free-energy profiles of the drug as a function of skin depth without further model assumptions. As the only input, drug concentration profiles derived from X-ray microscopy at three consecutive times are used. For dexamethasone, skin barrier function is shown to rely on the combination of a substantially reduced drug diffusivity in the stratum corneum (the outermost epidermal layer), dominant at short times, and a pronounced free-energy barrier at the transition from the epidermis to the dermis underneath, which determines the drug distribution in the long-time limit. Our modeling approach, which is generally applicable to all kinds of barriers and diffusors, allows us to disentangle diffusivity from free-energetic effects. Thereby we can predict short-time drug penetration, where experimental measurements are not feasible, as well as long-time permeation, where ex vivo samples deteriorate, and thus span the entire timescales of biological barrier functioning.


Assuntos
Dexametasona/administração & dosagem , Epiderme/metabolismo , Administração Cutânea , Dexametasona/farmacocinética , Difusão , Humanos , Microscopia , Modelos Químicos , Absorção Cutânea , Raios X
7.
Biomacromolecules ; 20(5): 1867-1875, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30995401

RESUMO

Polyglycerol nanogels are three-dimensional polymeric networks with a few hundred nanometer sizes and the ability to encapsulate and deliver cargos for a wide range of biomedical applications. However, time-consuming and multistep synthetic routes as well as milligram-scale production have hindered further development of these nanomaterials. In this work, we report on a straightforward synthetic method for the production of polyglycerol nanoarchitectures. Enzymatic ring-opening copolymerization of a mixture of glycidol and succinic anhydride resulted in polyglycerol nanogels with succinic acid segments in their backbone. Novozyme 435 was used as a dual catalytic agent to support ring-opening polymerization of the above-mentioned cyclic monomers as well as esterification of the produced oligomers to obtain nanogels. While succinic acid segments improved the biodegradability and loading capacity of nanogels, polyglycerol caused water solubility, high functionality, and biocompatibility. Nanogels were loaded with tacrolimus and photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP)-a close congener of the approved photosensitizer temoporfin (mTHPC)-and their ability to improve the skin penetration of these therapeutic agents was investigated. mTHPP delivery experiments on human skin, which were quantified by fluorescence microscopy, showed that these nanogels deposit in the stratum corneum and release the loaded drug to viable epidermis of skin efficiently in comparison with commercially available base cream. Taking advantage of the straightforward synthesis as well as biodegradability, biocompatibility, high loading capacity, and efficient skin penetration, the synthesized nanogels could be used as future topical delivery systems.


Assuntos
Portadores de Fármacos , Glicerol/síntese química , Nanogéis/química , Polímeros/síntese química , Absorção Cutânea , Succinatos/síntese química , Administração Cutânea , Sistemas de Liberação de Medicamentos
8.
Pharmacol Res ; 139: 446-451, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30395949

RESUMO

3D organ models have gained increasing attention as novel preclinical test systems and alternatives to animal testing. Over the years, many excellent in vitro tissue models have been developed. In parallel, microfluidic organ-on-a-chip tissue cultures have gained increasing interest for their ability to house several organ models on a single device and interlink these within a human-like environment. In contrast to these advancements, the development of human disease models is still in its infancy. Although major advances have recently been made, efforts still need to be intensified. Human disease models have proven valuable for their ability to closely mimic disease patterns in vitro, permitting the study of pathophysiological features and new treatment options. Although animal studies remain the gold standard for preclinical testing, they have major drawbacks such as high cost and ongoing controversy over their predictive value for several human conditions. Moreover, there is growing political and social pressure to develop alternatives to animal models, clearly promoting the search for valid, cost-efficient and easy-to-handle systems lacking interspecies-related differences. In this review, we discuss the current state of the art regarding 3D organ as well as the opportunities, limitations and future implications of their use.


Assuntos
Modelos Biológicos , Farmacologia/métodos , Animais , Pesquisa Biomédica , Epitélio , Humanos , Fígado , Impressão Tridimensional , Engenharia Tecidual
9.
Planta Med ; 85(7): 578-582, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30248704

RESUMO

In recent years, skin reactions such as phytophotodermatitis, contact dermatitis, and other inflammatory responses after contact with chemicals from various plants, e.g., Heracleum mantegazzianum or Hippomane mancinella, are one of the hot topics in phytobiology. Occupational skin inflammation after contact with latices of plants from Euphorbiaceae are common among people who work with plants of this family. Activation of protein kinase C by G protein-coupled receptors such as protease-activated receptors is associated with skin inflammation. In this study, we focused on the inflammatory modulation potential of proteases combined with diterpenes on human skin. Because of its role as a proinflammatory cytokine, we concentrated on the release of IL-8 by fibroblasts and keratinocytes. Therefore, primary human dermal fibroblasts and the HaCaT keratinocytes cell line were used as a model. The results indicated that the combination of the protease mauritanicain from Euphorbia mauritanica and phorbol-12-myristate-13-acetate induced a significantly increased IL-8 release in HaCaT keratinocytes compared to single treatments. The obtained results also suggest that mauritanicain has an anti-inflammatory effect on primary human dermal fibroblasts.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Euphorbia/enzimologia , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Serina Proteases/farmacologia , Acetato de Tetradecanoilforbol/análogos & derivados , Anti-Inflamatórios não Esteroides/isolamento & purificação , Linhagem Celular , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Interleucina-8/metabolismo , Queratinócitos/metabolismo , Serina Proteases/isolamento & purificação , Acetato de Tetradecanoilforbol/farmacologia
10.
Exp Dermatol ; 27(5): 476-483, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29356091

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease of increasing prevalence, especially in industrialized countries. Roughly 25% of the children and 1%-3% of adults are affected. Although significant progress has been made in the understanding of the pathogenesis of AD, many aspects remain poorly understood. Moreover, there is a pressing need for improved therapeutic options. Studies to elucidate the pathophysiological pathways of AD and to identify novel therapeutic targets over the last few decades have been conducted almost exclusively in animal models. However, in vitro approaches such as 3D skin disease models have recently emerged due to an increasing awareness of distinct interspecies-related differences that hamper the effective translation of results from animal models to humans. In addition, there is growing political and social pressure to develop alternatives to animal models according to the 3Rs principle (reduction, refinement and replacement of animal models).


Assuntos
Alternativas aos Testes com Animais , Dermatite Atópica , Técnicas In Vitro , Animais , Modelos Animais de Doenças
11.
Biomacromolecules ; 19(12): 4607-4616, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30376297

RESUMO

Transdermal immunization is highly attractive because of the skin's accessibility and unique immunological characteristics. However, it remains a relatively unexplored route of administration because of the great difficulty of transporting antigens past the outermost layer of skin, the stratum corneum. In this article, the abilities of three poly( N-vinylcaprolactam) (PVCL)-based thermoresponsive assemblies-PVCL hydrogels and nanogels plus novel film forming PVCL/acrylic nanogels-to act as protein delivery systems were investigated. Similar thermal responses were observed in all systems, with transition temperatures close to 32 °C, close to that of the skin surface. The investigated dermal delivery systems showed no evidence of cytotoxicity in human fibroblasts and were able to load and release ovalbumin (OVA), a well-studied antigen, in a temperature-dependent manner in vitro. The penetration of OVA into ex vivo human skin following topical application was evaluated, where enhanced skin delivery was seen for the OVA-loaded PVCL systems relative to administration of the protein alone. The distinct protein release and skin penetration profiles observed for the different PVCL assemblies were here discussed on the basis of their structural differences.


Assuntos
Antígenos/química , Portadores de Fármacos , Hidrogéis/química , Nanopartículas/química , Administração Cutânea , Antígenos/administração & dosagem , Caprolactama/química , Derme/efeitos dos fármacos , Derme/patologia , Epiderme/efeitos dos fármacos , Epiderme/patologia , Humanos , Hidrogéis/administração & dosagem , Nanopartículas/administração & dosagem , Ovalbumina/administração & dosagem , Ovalbumina/química , Polietilenoglicóis/síntese química , Polietilenoimina/química , Polímeros/administração & dosagem , Polímeros/química , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos , Temperatura , Vacinação
12.
Exp Dermatol ; 26(2): 124-126, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27249231

RESUMO

Wound repair is an orchestrated process, encompassing the phases of inflammation, proliferation and tissue remodeling. In this context, sodium hydrogen exchanger 1 (NHE1) is crucial to epidermal barrier integrity and acidification. Recently, we found that extracellular pH (pHe) on wound surfaces is dramatically increased initially after barrier disruption, and that pHe decreases gradually during physiological healing. Additionally, we have shown that spatial NHE1-patterns account for pHe-gradients on surfaces of chronic wounds. Here, we show that NHE1-expression is very low at margins initially after wounding and that it increases massively during the time-course of physiolgical healing. This finding is in accordance with the decrease of pHe on wound surfaces, which we reported on in previous works. Thus, we show that NHE1 is an interesting target when it comes to modification of surface pHe on wounds, both acute and chronic, and that NHE1 is time-dependently regulated in physiological healing.


Assuntos
RNA Mensageiro/metabolismo , Trocador 1 de Sódio-Hidrogênio/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo , Cicatrização , Epiderme/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Fatores de Tempo
13.
Biomacromolecules ; 18(6): 1762-1771, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28511014

RESUMO

The adsorption of biomolecules to the surface of nanoparticles (NPs) following administration into biological environments is widely recognized. In particular, the "protein corona" is well understood in terms of formation kinetics and impact upon the biological interactions of NPs. Its presence is an essential consideration in the design of therapeutic NPs. In the present study, the protein coronas of six polymeric nanoparticles of prospective therapeutic use were investigated. These included three colloidal NPs-soft core-multishell (CMS) NPs, plus solid cationic Eudragit RS (EGRS), and anionic ethyl cellulose (EC) nanoparticles-and three nanogels (NGs)-thermoresponsive dendritic-polyglycerol (dPG) nanogels (NGs) and two amino-functionalized dPG-NGs. Following incubation with human plasma, protein coronas were characterized and their biological interactions compared with pristine NPs. All NPs demonstrated protein adsorption and increased hydrodynamic diameters, although the solid EGRS and EC NPs bound notably more protein than the other tested particles. Shifts toward moderately negative surface charges were also observed for all corona bearing NPs, despite varied zeta potentials in their pristine states. While the uptake and cellular adhesion of the colloidal NPs in primary human keratinocytes and human umbilical vein endothelial cells were significantly decreased when bearing the protein corona, no obvious impact was seen in the NGs. By contrast, corona bearing NGs induced marked increases in cytokine release from primary human macrophages not seen with corona bearing colloidal NPs. Despite this, no apparent enhancement to in vitro toxicity was noted. Finally, drug release from EGRS and EC NPs was assessed, where a decrease was seen in the EGRS NPs alone. Together these results provide a direct comparison of the physical and biological impact the protein corona has on NPs of widely varied character and in particular highlights a distinction between the corona's effects on NGs and colloidal NPs.


Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis/química , Celulose/análogos & derivados , Glicerol/química , Nanopartículas/química , Polímeros/química , Coroa de Proteína/química , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Materiais Biocompatíveis/farmacologia , Proteínas Sanguíneas/química , Celulose/química , Coloides , Citocinas/biossíntese , Citocinas/metabolismo , Dexametasona/química , Dexametasona/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Cultura Primária de Células , Eletricidade Estática
14.
Nanomedicine ; 13(1): 317-327, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27697619

RESUMO

Inflammatory disorders of the skin pose particular therapeutic challenges due to complex structural and functional alterations of the skin barrier. Penetration of several anti-inflammatory drugs is particularly problematic in psoriasis, a common dermatitis condition with epidermal hyperplasia and hyperkeratosis. Here, we tested in vivo dermal penetration and biological effects of dendritic core-multishell-nanocarriers (CMS) in a murine skin model of psoriasis and compared it to healthy skin. In both groups, CMS exclusively localized to the stratum corneum of the epidermis with only very sporadic uptake by Langerhans cells. Furthermore, penetration into the viable epidermis of nile red as a model for lipophilic compounds was enhanced by CMS. CMS proved fully biocompatible in several in vitro assays and on normal and psoriatic mouse skin. The observations support the concept of CMS as promising candidates for drug delivery in inflammatory hyperkeratotic skin disorders in vivo.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Psoríase/tratamento farmacológico , Absorção Cutânea , Administração Cutânea , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
15.
Skin Pharmacol Physiol ; 30(4): 180-189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28651246

RESUMO

Reconstructed skin models are suitable test systems for toxicity testing and for basic investigations on (patho-)physiological aspects of human skin. Reconstructed human skin, however, has clear limitations such as the lack of immune cells and a significantly weaker skin barrier function compared to native human skin. Potential reasons for the latter might be the lack of mechanical forces during skin model cultivation which is performed classically in static well-plate setups. Mechanical forces and shear stress have a major impact on tissue formation and, hence, tissue engineering. In the present work, a perfusion platform was developed allowing dynamic cultivation of in vitro skin models. The platform was designed to cultivate reconstructed skin at the air-liquid interface with a laminar and continuous medium flow below the dermis equivalent. Histological investigations confirmed the formation of a significantly thicker stratum corneum compared to the control cultivated under static conditions. Moreover, the skin differentiation markers involucrin and filaggrin as well as the tight junction proteins claudin 1 and occludin showed increased expression in the dynamically cultured skin models. Unexpectedly, despite improved differentiation, the skin barrier function of the dynamically cultivated skin models was not enhanced compared with the skin models cultivated under static conditions.


Assuntos
Modelos Biológicos , Absorção Cutânea , Pele/metabolismo , Animais , Bovinos , Células Cultivadas , Claudina-1/genética , Claudina-1/metabolismo , Fibroblastos/metabolismo , Proteínas Filagrinas , Humanos , Técnicas In Vitro , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/metabolismo , Ocludina/genética , Ocludina/metabolismo , Perfusão , Permeabilidade , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
16.
Mol Pharm ; 12(5): 1391-401, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25871518

RESUMO

Hyaluronic acid (HA) hydrogels are interesting delivery systems for topical applications. Besides moisturizing the skin and improving wound healing, HA facilitates topical drug absorption and is highly compatible with labile biomacromolecules. Hence, in this study we investigated the influence of HA hydrogels with different molecular weights (5 kDa, 100 kDa, 1 MDa) on the skin absorption of the model protein bovine serum albumin (BSA) using fluorescence lifetime imaging microscopy (FLIM). To elucidate the interactions of HA with the stratum corneum and the skin absorption of HA itself, we combined FLIM and Fourier-transform infrared (FTIR) spectroscopy. Our results revealed distinct formulation and skin-dependent effects. In barrier deficient (tape-stripped) skin, BSA alone penetrated into dermal layers. When BSA and HA were applied together, however, penetration was restricted to the epidermis. In normal skin, penetration enhancement of BSA into the epidermis was observed when applying low molecular weight HA (5 kDa). Fluorescence resonance energy transfer analysis indicated close interactions between HA and BSA under these conditions. FTIR spectroscopic analysis of HA interactions with stratum corneum constituents showed an α-helix to ß-sheet interconversion of keratin in the stratum corneum, increased skin hydration, and intense interactions between 100 kDa HA and the skin lipids resulting in a more disordered arrangement of the latter. In conclusion, HA hydrogels restricted the delivery of biomacromolecules to the stratum corneum and viable epidermis in barrier deficient skin, and therefore seem to be potential topical drug vehicles. In contrast, HA acted as an enhancer for delivery in normal skin, probably mediated by a combination of cotransport, increased skin hydration, and modifications of the stratum corneum properties.


Assuntos
Ácido Hialurônico/química , Soroalbumina Bovina/química , Pele/metabolismo , Administração Cutânea , Animais , Bovinos , Técnicas In Vitro , Soroalbumina Bovina/metabolismo , Absorção Cutânea , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos
17.
Nanomedicine ; 11(5): 1179-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25791808

RESUMO

Genetic skin diseases caused by mutations resulting in diminished protein synthesis could benefit from local substitution of the missing protein. Proteins, however, are excluded from topical applications due to their physicochemical properties. We prepared protein-loaded thermoresponsive poly(N-isopropylacrylamide)-polyglycerol-based nanogels exhibiting a thermal trigger point at 35°C, which is favorable for cutaneous applications due to the native thermal gradient of human skin. At≥35°C, the particle size (~200nm) was instantly reduced by 20% and 93% of the protein was released; no alterations of protein structure or activity were detected. Skin penetration experiments demonstrated efficient intraepidermal protein delivery particularly in barrier deficient skin, penetration of the nanogels themselves was not detected. The proof of concept was provided by transglutaminase 1-loaded nanogels which efficiently delivered the protein into transglutaminase 1-deficient skin models resulting in a restoration of skin barrier function. In conclusion, thermoresponsive nanogels are promising topical delivery systems for biomacromolecules. FROM THE CLINICAL EDITOR: Many skin disorders are characterized by an absence of a specific protein due to underlying gene mutation. In this article, the authors described the use of a thermoresponsive PNIPAM-dPG nanogel for cutaneous protein delivery in a gene knock-down model of human skin. The results may have implication for nano-based local delivery of therapeutic agents in skin.


Assuntos
Resinas Acrílicas/química , Preparações de Ação Retardada/química , Géis/química , Glicerol/química , Polímeros/química , Pele/metabolismo , Transglutaminases/administração & dosagem , Administração Cutânea , Animais , Asparaginase/administração & dosagem , Asparaginase/farmacocinética , Bovinos , Preparações de Ação Retardada/metabolismo , Géis/metabolismo , Técnicas de Silenciamento de Genes , Glicerol/metabolismo , Humanos , Polímeros/metabolismo , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/farmacocinética , Pele/ultraestrutura , Absorção Cutânea , Suínos , Temperatura , Testosterona/administração & dosagem , Testosterona/farmacocinética , Transglutaminases/genética , Transglutaminases/farmacocinética
18.
EMBO Mol Med ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877290

RESUMO

Thymic stromal lymphopoietin (TSLP) is a key player in atopic diseases, which has sparked great interest in therapeutically targeting TSLP. Yet, no small-molecule TSLP inhibitors exist due to the challenges of disrupting the protein-protein interaction between TSLP and its receptor. Here, we report the development of small-molecule TSLP receptor inhibitors using virtual screening and docking of >1,000,000 compounds followed by iterative chemical synthesis. BP79 emerged as our lead compound that effectively abrogates TSLP-triggered cytokines at low micromolar concentrations. For in-depth analysis, we developed a human atopic disease drug discovery platform using multi-organ chips. Here, topical application of BP79 onto atopic skin models that were co-cultivated with lung models and Th2 cells effectively suppressed immune cell infiltration and IL-13, IL-4, TSLP, and periostin secretion, while upregulating skin barrier proteins. RNA-Seq analysis corroborate these findings and indicate protective downstream effects on the lungs. To the best of our knowledge, this represents the first report of a potent putative small molecule TSLPR inhibitor which has the potential to expand the therapeutic and preventive options in atopic diseases.

19.
Adv Healthc Mater ; : e2304525, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563726

RESUMO

Mucus forms the first defense line of human lungs, and as such hampers the efficient delivery of therapeutics to the underlying epithelium. This holds particularly true for genetic cargo such as CRISPR-based gene editing tools which cannot readily surmount the mucosal barrier. While lipid nanoparticles (LNPs) emerge as versatile non-viral gene delivery systems that can help overcome the delivery challenge, many knowledge gaps remain, especially for diseased states such as cystic fibrosis (CF). This study provides fundamental insights into Cas9 mRNA or ribonucleoprotein-loaded LNP-mucus interactions in healthy and diseased states by assessing the impact of the genetic cargo, mucin sialylation, mucin concentration, ionic strength, pH, and polyethylene glycol (PEG) concentration and nature on LNP diffusivity leveraging experimental approaches and Brownian dynamics (BD) simulations. Taken together, this study identifies key mucus and LNP characteristics that are critical to enabling a rational LNP design for transmucosal delivery.

20.
J Control Release ; 368: 290-302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423473

RESUMO

Therapeutic proteins often require needle-based injections, which compromise medication adherence especially for those with chronic diseases. Sublingual administration provides a simple and non-invasive alternative. Herein, two novel peptides (lipid-conjugated protamine and a protamine dimer) were synthesized to enable sublingual delivery of proteins through simple physical mixing with the payloads. It was found that the novel peptides promoted intracellular delivery of proteins via increased pore formation on the cell surface. Results from in vitro models of cell spheroids and human sublingual tissue substitute indicated that the novel peptides enhanced protein penetration through multiple cell layers compared to protamine. The novel peptides were mixed with insulin or semaglutide and sublingually delivered to mice for blood glucose (BG) control. The effects of these sublingual formulations were comparable to the subcutaneous preparations and superior to protamine. In addition to peptide drugs, the novel peptides were shown to enable sublingual absorption of larger proteins with molecular weights from 22 to 150 kDa in mice, including human recombinant growth hormone (rhGH), bovine serum albumin (BSA) and Immunoglobulin G (IgG). The novel peptides given sublingually did not induce any measurable toxicities in mice.


Assuntos
Imunoglobulina G , Peptídeos , Animais , Camundongos , Humanos , Administração Sublingual , Protaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA