Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(32): 17814-17823, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32582898

RESUMO

This study presents the application of X-ray diffraction computed tomography for the first time to analyze the crystal dimensions of LiNi0.33Mn0.33Co0.33O2 electrodes cycled to 4.2 and 4.7 V in full cells with graphite as negative electrodes at 1 µm spatial resolution to determine the change in unit cell dimensions as a result of electrochemical cycling. The nature of the technique permits the spatial localization of the diffraction information in 3D and mapping of heterogeneities from the electrode to the particle level. An overall decrease of 0.4% and 0.6% was observed for the unit cell volume after 100 cycles for the electrodes cycled to 4.2 and 4.7 V. Additionally, focused ion beam-scanning electron microscope cross-sections indicate extensive particle cracking as a function of upper cut-off voltage, further confirming that severe cycling stresses exacerbate degradation. Finally, the technique facilitates the detection of parts of the electrode that have inhomogeneous lattice parameters that deviate from the bulk of the sample, further highlighting the effectiveness of the technique as a diagnostic tool, bridging the gap between crystal structure and electrochemical performance.

2.
Nano Lett ; 19(6): 3811-3820, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31082246

RESUMO

Optimizing the chemical and morphological parameters of lithium-ion (Li-ion) electrodes is extremely challenging, due in part to the absence of techniques to construct spatial and temporal descriptions of chemical and morphological heterogeneities. We present the first demonstration of combined high-speed X-ray diffraction (XRD) and XRD computed tomography (XRD-CT) to probe, in 3D, crystallographic heterogeneities within Li-ion electrodes with a spatial resolution of 1 µm. The local charge-transfer mechanism within and between individual particles was investigated in a silicon(Si)-graphite composite electrode. High-speed XRD revealed charge balancing kinetics between the graphite and Si during the minutes following the transition from operation to open circuit. Subparticle lithiation heterogeneities in both Si and graphite were observed using XRD-CT, where the core and shell structures were segmented, and their respective diffraction patterns were characterized.


Assuntos
Grafite/química , Lítio/química , Silício/química , Eletrodos , Tomografia Computadorizada por Raios X , Difração de Raios X
3.
Nat Commun ; 13(1): 1616, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338141

RESUMO

In recent years, low-temperature polymer electrolyte fuel cells have become an increasingly important pillar in a zero-carbon strategy for curbing climate change, with their potential to power multiscale stationary and mobile applications. The performance improvement is a particular focus of research and engineering roadmaps, with water management being one of the major areas of interest for development. Appropriate characterisation tools for mapping the evolution, motion and removal of water are of high importance to tackle shortcomings. This article demonstrates the development of a 4D high-speed neutron imaging technique, which enables a quantitative analysis of the local water evolution. 4D visualisation allows the time-resolved studies of droplet formation in the flow fields and water quantification in various cell parts. Performance parameters for water management are identified that offer a method of cell classification, which will, in turn, support computer modelling and the engineering of next-generation flow field designs.

4.
Small Methods ; 6(10): e2200887, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089665

RESUMO

X-ray computed tomography (X-ray CT) is a non-destructive characterization technique that in recent years has been adopted to study the microstructure of battery electrodes. However, the often manual and laborious data analysis process hinders the extraction of useful metrics that can ultimately inform the mechanisms behind cycle life degradation. This work presents a novel approach that combines two convolutional neural networks to first locate and segment each particle in a nano-CT LiNiMnCoO2 (NMC) electrode dataset, and successively classifies each particle according to the presence of flaws or cracks within its internal structure. Metrics extracted from the computer vision segmentation are validated with respect to traditional threshold-based segmentation, confirming that flawed particles are correctly identified as single entities. Successively, slices from each particle are analyzed by a pre-trained classifier to detect the presence of flaws or cracks. The models are used to quantify microstructural evolution in uncycled and cycled NMC811 electrodes, as well as the number of flawed particles in a NMC622 electrode. As a proof-of-concept, a 3-phase segmentation is also presented, whereby each individual flaw is segmented as a separate pixel label. It is anticipated that this analysis pipeline will be widely used in the field of battery research and beyond.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Computadores , Eletrodos
5.
ACS Nano ; 15(1): 1321-1330, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33355443

RESUMO

Due to complex degradation mechanisms, disparities between the theoretical and practical capacities of lithium-ion battery cathode materials persist. Specifically, Ni-rich chemistries such as LiNi0.8Mn0.1Co0.1O2 (or NMC811) are one of the most promising choices for automotive applications; however, they continue to suffer severe degradation during operation that is poorly understood, thus challenging to mitigate. Here we use operando Bragg coherent diffraction imaging for 4D analysis of these mechanisms by inspecting the individual crystals within primary particles at various states of charge (SoC). Although some crystals were relatively homogeneous, we consistently observed non-uniform distributions of inter- and intracrystal strain at all measured SoC. Pristine structures may already possess heterogeneities capable of triggering crystal splitting and subsequently particle cracking. During low-voltage charging (2.7-3.5 V), crystal splitting may still occur even during minimal bulk deintercalation activity; and during discharging, rotational effects within parallel domains appear to be the precursor for the nucleation of screw dislocations at the crystal core. Ultimately, this discovery of the central role of crystal grain splitting in the charge/discharge dynamics may have ramifications across length scales that affect macroscopic performance loss during real-world battery operation.

6.
Adv Sci (Weinh) ; 7(12): 2000362, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596123

RESUMO

Vast quantities of powder leave production lines each day, often with strict control measures. For quality checks to provide the most value, they must be capable of screening individual particles in 3D and at high throughput. Conceptually, X-ray computed tomography (CT) is capable of this; however, achieving lab-based reconstructions of individual particles has, until now, relied upon scan-times on the order of tens of hours, or even days, and although synchrotron facilities are potentially capable of faster scanning times, availability is limited, making in-line product analysis impractical. This work describes a preparation method and high-throughput scanning procedure for the 3D characterization of powder samples in minutes using nano-CT by full-filed transmission X-ray microscopy with zone-plate focusing optics. This is demonstrated on various particle morphologies from two next-generation lithium-ion battery cathodes: LiNi0.8Mn0.1Co0.1O2 and LiNi0.6Mn0.2Co0.2O2; namely, NMC811 and NMC622. Internal voids are detected which limit energy density and promote degradation, potentially impacting commercial application such as the drivable range of an electric vehicle.

7.
Nat Commun ; 11(1): 777, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034126

RESUMO

The temporally and spatially resolved tracking of lithium intercalation and electrode degradation processes are crucial for detecting and understanding performance losses during the operation of lithium-batteries. Here, high-throughput X-ray computed tomography has enabled the identification of mechanical degradation processes in a commercial Li/MnO2 primary battery and the indirect tracking of lithium diffusion; furthermore, complementary neutron computed tomography has identified the direct lithium diffusion process and the electrode wetting by the electrolyte. Virtual electrode unrolling techniques provide a deeper view inside the electrode layers and are used to detect minor fluctuations which are difficult to observe using conventional three dimensional rendering tools. Moreover, the 'unrolling' provides a platform for correlating multi-modal image data which is expected to find wider application in battery science and engineering to study diverse effects e.g. electrode degradation or lithium diffusion blocking during battery cycling.

8.
Nat Commun ; 11(1): 631, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005812

RESUMO

The performance of lithium ion electrodes is hindered by unfavorable chemical heterogeneities that pre-exist or develop during operation. Time-resolved spatial descriptions are needed to understand the link between such heterogeneities and a cell's performance. Here, operando high-resolution X-ray diffraction-computed tomography is used to spatially and temporally quantify crystallographic heterogeneities within and between particles throughout both fresh and degraded LixMn2O4 electrodes. This imaging technique facilitates identification of stoichiometric differences between particles and stoichiometric gradients and phase heterogeneities within particles. Through radial quantification of phase fractions, the response of distinct particles to lithiation is found to vary; most particles contain localized regions that transition to rock salt LiMnO2 within the first cycle. Other particles contain monoclinic Li2MnO3 near the surface and almost pure spinel LixMn2O4 near the core. Following 150 cycles, concentrations of LiMnO2 and Li2MnO3 significantly increase and widely vary between particles.

9.
Nat Commun ; 11(1): 2079, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350275

RESUMO

Driving range and fast charge capability of electric vehicles are heavily dependent on the 3D microstructure of lithium-ion batteries (LiBs) and substantial fundamental research is required to optimise electrode design for specific operating conditions. Here we have developed a full microstructure-resolved 3D model using a novel X-ray nano-computed tomography (CT) dual-scan superimposition technique that captures features of the carbon-binder domain. This elucidates how LiB performance is markedly affected by microstructural heterogeneities, particularly under high rate conditions. The elongated shape and wide size distribution of the active particles not only affect the lithium-ion transport but also lead to a heterogeneous current distribution and non-uniform lithiation between particles and along the through-thickness direction. Building on these insights, we propose and compare potential graded-microstructure designs for next-generation battery electrodes. To guide manufacturing of electrode architectures, in-situ X-ray CT is shown to reliably reveal the porosity and tortuosity changes with incremental calendering steps.

10.
Nat Commun ; 10(1): 1497, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940801

RESUMO

Ceramic fuel cells offer a clean and efficient means of producing electricity through a variety of fuels. However, miniaturization of cell dimensions for portable device application remains a challenge, as volumetric power densities generated by readily-available planar/tubular ceramic cells are limited. Here, we demonstrate a concept of 'micro-monolithic' ceramic cell design. The mechanical robustness and structural integrity of this design is thoroughly investigated with real-time, synchrotron X-ray diffraction computed tomography, suggesting excellent thermal cycling stability. The successful miniaturization results in an exceptional power density of 1.27 W cm-2 at 800 °C, which is among the highest reported. This holistic design incorporates both mechanical integrity and electrochemical performance, leading to mechanical property enhancement and representing an important step toward commercial development of portable ceramic devices with high volumetric power (>10 W cm-3), fast thermal cycling and marked mechanical reliability.

11.
Materials (Basel) ; 11(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388856

RESUMO

Lithium-based rechargeable batteries such as lithium-ion (Li-ion), lithium-sulfur (Li-S), and lithium-air (Li-air) cells typically consist of heterogenous porous electrodes. In recent years, there has been growing interest in the use of in-situ and operando micro-CT to capture their physical and chemical states in 3D. The development of in-situ electrochemical cells along with recent improvements in radiation sources have expanded the capabilities of micro-CT as a technique for longitudinal studies on operating mechanisms and degradation. In this paper, we present an overview of the capabilities of the current state of technology and demonstrate novel tomography cell designs we have developed to push the envelope of spatial and temporal resolution while maintaining good electrochemical performance. A bespoke PEEK in-situ cell was developed, which enabled imaging at a voxel resolution of ca. 230 nm and permitted the identification of sub-micron features within battery electrodes. To further improve the temporal resolution, future work will explore the use of iterative reconstruction algorithms, which require fewer angular projections for a comparable reconstruction.

12.
Adv Sci (Weinh) ; 5(1): 1700369, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375967

RESUMO

As the energy density of lithium-ion cells and batteries increases, controlling the outcomes of thermal runaway becomes more challenging. If the high rate of gas generation during thermal runaway is not adequately vented, commercial cell designs can rupture and explode, presenting serious safety concerns. Here, ultra-high-speed synchrotron X-ray imaging is used at >20 000 frames per second to characterize the venting processes of six different 18650 cell designs undergoing thermal runaway. For the first time, the mechanisms that lead to the most catastrophic type of cell failure, rupture, and explosion are identified and elucidated in detail. The practical application of the technique is highlighted by evaluating a novel 18650 cell design with a second vent at the base, which is shown to avoid the critical stages that lead to rupture. The insights yielded in this study shed new light on battery failure and are expected to guide the development of safer commercial cell designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA