Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(13): 137002, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451578

RESUMO

The large available Hilbert space and high coherence of cavity resonators make these systems an interesting resource for storing encoded quantum bits. To perform a quantum gate on this encoded information, however, complex nonlinear operations must be applied to the many levels of the oscillator simultaneously. In this work, we introduce the selective number-dependent arbitrary phase (snap) gate, which imparts a different phase to each Fock-state component using an off-resonantly coupled qubit. We show that the snap gate allows control over the quantum phases by correcting the unwanted phase evolution due to the Kerr effect. Furthermore, by combining the snap gate with oscillator displacements, we create a one-photon Fock state with high fidelity. Using just these two controls, one can construct arbitrary unitary operations, offering a scalable route to performing logical manipulations on oscillator-encoded qubits.

2.
Nano Lett ; 14(8): 4598-601, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25051525

RESUMO

The spatial structure of light with Orbital Angular Momentum, or "twisted light", closely resembles the shape of atomic wave functions. It could therefore make symmetry-forbidden transitions possible in quantum dots, or "artificial atoms". However, the vanishing intensity in the center of an OAM beam usually makes this effect weak. Here we show a plasmonic approach to focus OAM light to subwavelength dimensions using metallic nanoscale resonant optical antennas. This allows to increase the field intensity of OAM light at the typical dimensions of quantum dots to an intensity larger than a regular Gaussian beam, which corresponds to increasing the interaction strength by 3 orders of magnitude.

3.
Nano Lett ; 10(2): 661-4, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20041700

RESUMO

Surface plasmon polaritons (plasmons) have the potential to interface electronic and optical devices. They could prove extremely useful for integrated quantum information processing. Here we demonstrate on-chip electrical detection of single plasmons propagating along gold waveguides. The plasmons are excited using the single-photon emission of an optically emitting quantum dot. After propagating for several micrometers, the plasmons are coupled to a superconducting detector in the near-field. Correlation measurements prove that single plasmons are being detected.


Assuntos
Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Eletrônica , Desenho de Equipamento , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Nanopartículas/química , Pontos Quânticos , Ressonância de Plasmônio de Superfície/métodos , Temperatura
4.
Nat Commun ; 8(1): 94, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733580

RESUMO

A logical qubit is a two-dimensional subspace of a higher dimensional system, chosen such that it is possible to detect and correct the occurrence of certain errors. Manipulation of the encoded information generally requires arbitrary and precise control over the entire system. Whether based on multiple physical qubits or larger dimensional modes such as oscillators, the individual elements in realistic devices will always have residual interactions, which must be accounted for when designing logical operations. Here we demonstrate a holistic control strategy which exploits accurate knowledge of the Hamiltonian to manipulate a coupled oscillator-transmon system. We use this approach to realize high-fidelity (98.5%, inferred), decoherence-limited operations on a logical qubit encoded in a superconducting cavity resonator using four-component cat states. Our results show the power of applying numerical techniques to control linear oscillators and pave the way for utilizing their large Hilbert space as a resource in quantum information processing.A logical qubit is a two-dimensional subspace of a higher dimensional system, whose manipulation requires precise control over the whole system. Here the authors demonstrate a control strategy which exploits precise knowledge of the Hamiltonian to manipulate a coupled oscillator-transmon system.

5.
Nat Nanotechnol ; 8(10): 719-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934097

RESUMO

Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

6.
Rev Sci Instrum ; 84(5): 053108, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742533

RESUMO

We propose and develop a readout scheme for superconducting single-photon detectors based on an integrated circuit, relaxing the need for large bandwidth amplification and resulting in voltage steps proportional to the number of detected photons. We also demonstrate time gating, to filter scattered light in time and reduce dark counts. This could lead to a higher signal-to-noise ratio. The gate pulse is generated on the detection of a photon created by a spontaneous parametric down-conversion source, heralding the presence of a second photon. These two schemes could find applications within advanced multi-array imaging detection systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA