RESUMO
Complications of the worldwide use of non-steroidal anti-inflammatory drugs (NSAIDs) sparked scientists to design novel harmless alternatives as an urgent need. So, a unique hybridization tactic of quinoline/pyrazole/thioamide (4a-c) has been rationalized and synthesized as potential COX-2/15-LOX dual inhibitors, utilizing relevant reported studies on these pharmacophores. Moreover, we extended these preceding hybrids into more varied functionality, bearing crucial thiazole scaffolds(5a-l). All the synthesized hybrids were evaluatedin vitroas COX-2/15-LOX dual inhibitors. Initially, series4a-cexhibited significant potency towards 15-LOX inhibition (IC50 = 5.454-4.509 µM) compared to meclofenamate sodium (IC50 = 3.837 µM). Moreover, they revealed reasonable inhibitory activities against the COX-2 enzyme in comparison to celecoxib.Otherwise, conjugates 5a-ldisclosed marked inhibitory activity against 15-LOX and strong inhibitory to COX-2. In particular, hybrids5d(IC50 = 0.239 µM, SI = 8.95), 5h(IC50 = 0.234 µM, SI = 20.35) and 5l (IC50 = 0.201 µM, SI = 14.42) revealed more potency and selectivity outperforming celecoxib (IC50 = 0.512 µM, SI = 4.28). In addition, the most potentcompounds, 4a, 5d, 5h, and 5l have been elected for further in vivoevaluation and displayed potent inhibition of edema in the carrageenan-induced rat paw edema test that surpassed indomethacin. Further, compounds5d, 5h, and 5l decreased serum inflammatory markers including oxidative biomarkersiNO, and pro-inflammatory mediators cytokines like TNF-α, IL-6, and PGE. Ulcerogenic liability for tested compounds demonstrated obvious gastric mucosal safety. Furthermore, a histopathological study for compound 5l suggested a confirmatory comprehensive safety profile for stomach, kidney, and heart tissues. Docking and drug-likeness studies offered a good convention with the obtained biological investigation.
Assuntos
Inibidores de Ciclo-Oxigenase 2 , Quinolinas , Ratos , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Celecoxib/uso terapêutico , Ciclo-Oxigenase 1/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Simulação de Acoplamento Molecular , Anti-Inflamatórios não Esteroides , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Relação Estrutura-Atividade , Estrutura MolecularRESUMO
Three triterpenoidal derivatives [Sipholenol A (1), sipholenol L (2) and sipholenone A (3)] were isolated from the Red Sea sponge Siphonochalina sp. The structures were determined based on spectroscopic measurements (NMR, UV, IR and MS). The isolated compounds were evaluated for their cytotoxic activity against three cancer cell lines; HepG2, Caco-2 and HT-29. Moreover, the effects of these metabolites on cell cycle progression as well as cell cycle regulating proteins were assessed. Compounds 1, 2 and 3 showed moderate activity against HepG2 cells with IC(50) values of 17.18 ± 1.18, 24.01 ± 0.59 and 35.06 ± 1.10 µM, respectively. Compounds 1 and 2 exerted a considerable antiproliferative effect with IC(50) values of 4.80 ± 0.18 and 26.64 ± 0.30 µM, respectively, against Caco-2 cells. Finally, 1 and 2 exhibited antiproliferative activity against colorectal cancer cells (HT-29) with IC(50) values of 24.65 ± 0.80 and 4.48 ± 0.1 µM, respectively. Cell cycle analysis indicated that these compounds induced cell cycle arrest particularly in G0/G1 and S phases. Furthermore, the triterpenoids increased the expression of cyclin-B1, cyclin-D1 and cleaved caspase-3, as determined by immunofluorescence, indicating an important role of apoptosis in cell death induced by these compounds.
Assuntos
Ciclo Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Terpenos/administração & dosagem , Animais , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Poríferos/químicaRESUMO
In continuation of our chemical investigation on some medicinal plants of the genus Tephrosia, reinvestigation of the methylenechloride/methanol (1:1) extract of the aerial parts of Tephrosia purpurea yielded an aromatic ester 1, a sesquiterpene 2 and prenylated flavonoid 3. The structures of the compounds were established by comprehensive NMR studies, including DEPT, COSY, NOE, HMQC, HMBC, EIMS and CIMS.