Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
J Mol Diagn ; 26(6): 510-519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582400

RESUMO

The genetically isolated yet heterogeneous and highly consanguineous Indian population has shown a higher prevalence of rare genetic disorders. However, there is a significant socioeconomic burden for genetic testing to be accessible to the general population. In the current study, we analyzed next-generation sequencing data generated through focused exome sequencing from individuals with different phenotypic manifestations referred for genetic testing to achieve a molecular diagnosis. Pathogenic or likely pathogenic variants are reported in 280 of 833 cases with a diagnostic yield of 33.6%. Homozygous sequence and copy number variants were found as positive diagnostic findings in 131 cases (15.7%) because of the high consanguinity in the Indian population. No relevant findings related to reported phenotype were identified in 6.2% of the cases. Patients referred for testing due to metabolic disorder and neuromuscular disorder had higher diagnostic yields. Carrier testing of asymptomatic individuals with a family history of the disease, through focused exome sequencing, achieved positive diagnosis in 54 of 118 cases tested. Copy number variants were also found in trans with single-nucleotide variants and mitochondrial variants in a few of the cases. The diagnostic yield and the findings from this study signify that a focused exome test is a good lower-cost alternative for whole-exome and whole-genome sequencing and as a first-tier approach to genetic testing.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Testes Genéticos , Humanos , Sequenciamento do Exoma/métodos , Índia/epidemiologia , Masculino , Testes Genéticos/métodos , Testes Genéticos/economia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Exoma/genética , Consanguinidade , Criança , Adulto , Adolescente , Pré-Escolar , Fenótipo , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/epidemiologia , Lactente , Adulto Jovem
3.
Curr Protoc ; 3(12): e941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112503

RESUMO

Pathogenic germline variants causally contribute to the etiology of colorectal cancer (CRC) and polyposis. The era of massively parallel sequencing, also known as next-generation sequencing (NGS), make it highly possible, effective, and efficient to offer rapid and cost-effective diagnosis for CRC. To aid clinical laboratories in testing the most clinically significant genes, along with the published ACMG CRC technical standard guidelines, this protocol aims to provide a step-by-step technical workflow for carrying out the NGS-panel based CRC molecular diagnosis focusing on the wet lab portion of library preparation and massively parallel sequencing. Using the most popular pull-down-based target enrichment, the chapter particularly encompasses genomic DNA (gDNA) fragmentation, adapter ligation, indexing, hybridization, and capture, which is the most variable and technically challenging part of NGS testing involving at least 3 quality control (QC) checkpoints plus the pre- and post-capture PCR. The gDNA extraction and sequencing is less covered because they are relatively standard technologies with little variations and choices. Although this protocol also introduces pertinent testing algorithms and a brief guideline for pre- and post-testing genetic counselling, the audiences are required to refer to National Comprehensive Cancer Network (NCCN) clinical practice guidelines to determine the most appropriate testing strategies. Since NGS panel-based testing is a highly complex and dynamic platform with multiple choices from different technology and commercial resources, this technical benchtop-based protocol also aims to cover some of the key ramification points for decision-making by each laboratory at the discretion of the directors. © 2023 Wiley Periodicals LLC. Basic Protocol: Hereditary colorectal cancer (CRC) diagnosis by next-generation sequencing.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA